Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38478018

The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.


Cytoplasmic Vesicles , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Mammals/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Munc18 Proteins/analysis , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicular Transport Proteins/metabolism , Cytoplasmic Vesicles/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism
2.
PNAS Nexus ; 3(1): pgae006, 2024 Jan.
Article En | MEDLINE | ID: mdl-38269070

A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.

3.
Poult Sci ; 102(9): 102858, 2023 Sep.
Article En | MEDLINE | ID: mdl-37390550

To date, the selection of candidate strains for probiotic development in production animals has been largely based upon screens for desired phenotypic traits. However, increasing evidence indicates that the use of host-specific strains may be important, because coevolution with the animal host better prepares a bacterial strain to colonize and succeed in its respective host animal species. This concept was applied to Lactobacillus johnsonii in commercial poultry production because of its previous correlation with enhanced bird performance. Using 204 naturally isolated chicken- and turkey-source L. johnsonii, we demonstrate that there is a strong phylogenetic signal for coevolution with the animal host. These isolates differ phenotypically, even within host source, and these differences can be correlated with certain L. johnsonii phylogenetic clades. In commercial turkey poults, turkey-specific strains with strong in vitro phenotypes performed better early in life than strains lacking those phenotypes. A follow-up performance trial in broiler chickens demonstrated that chicken-specific strains result in better overall bird performance than nonchicken-specific strains. Collectively, this work provides evidence for the impact of host adaptation on a probiotic strain's potential. Furthermore, this top-down approach is useful for screening larger numbers of isolates for probiotic candidates.


Lactobacillus johnsonii , Probiotics , Animals , Lactobacillus/genetics , Poultry , Phylogeny , Host Specificity , Turkeys , Chickens/microbiology , Probiotics/pharmacology
4.
Poult Sci ; 102(7): 102712, 2023 Jul.
Article En | MEDLINE | ID: mdl-37156077

Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production.


Escherichia coli Infections , Poultry Diseases , Animals , Escherichia coli , Chickens , Turkeys , Phylogeny , Escherichia coli Infections/veterinary
5.
Nature ; 618(7963): 188-192, 2023 Jun.
Article En | MEDLINE | ID: mdl-37165187

The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.


Endoplasmic Reticulum , Mitochondria , Saccharomyces cerevisiae , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Lipids , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Models, Molecular , Synaptotagmins/chemistry , Synaptotagmins/metabolism
6.
J Cell Biol ; 222(5)2023 05 01.
Article En | MEDLINE | ID: mdl-36897280

Ceramides are essential precursors of complex sphingolipids and act as potent signaling molecules. Ceramides are synthesized in the endoplasmic reticulum (ER) and receive their head-groups in the Golgi apparatus, yielding complex sphingolipids (SPs). Transport of ceramides between the ER and the Golgi is executed by the essential ceramide transport protein (CERT) in mammalian cells. However, yeast cells lack a CERT homolog, and the mechanism of ER to Golgi ceramide transport remains largely elusive. Here, we identified a role for yeast Svf1 in ceramide transport between the ER and the Golgi. Svf1 is dynamically targeted to membranes via an N-terminal amphipathic helix (AH). Svf1 binds ceramide via a hydrophobic binding pocket that is located in between two lipocalin domains. We showed that Svf1 membrane-targeting is important to maintain flux of ceramides into complex SPs. Together, our results show that Svf1 is a ceramide binding protein that contributes to sphingolipid metabolism at Golgi compartments.


Ceramides , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Biological Transport , Ceramides/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Sphingolipids/metabolism , Saccharomyces cerevisiae Proteins/metabolism
7.
Poult Sci ; 102(5): 102607, 2023 May.
Article En | MEDLINE | ID: mdl-36933527

Modern poultry production relies on an ability to prevent and mitigate challenges to bird health, while maintaining a productive bird. A number of different classes of biologics-based feed additives exist, and many have been tested individually for their impacts on poultry health and performance. Fewer studies have examined the combinations of different classes of products. In this study, we examined the use of a well-established postbiotic feed additive (Original XPC, Diamond V) on turkey performance, with and without the addition of a proprietary saponin-based feed additive. This was accomplished in an 18-wk pen trial utilizing 22 pen replicates per treatment across 3 treatments (control, postbiotic, and postbiotic plus saponin). Significant differences in body weight were identified at wk 12 and 15 of age, with the postbiotic plus saponin treatment group resulting in heavier birds at both timepoints. Significant differences in feed conversion ratio were observed from 0 to 18 wk of age, with the postbiotic alone having improved FCR compared with the control group. No significant differences were observed for livability or feed intake. This study demonstrates that a combination of a postbiotic plus saponin may exert additive effects on the growth of the turkey.


Dietary Supplements , Saponins , Animals , Diet/veterinary , Chickens , Turkeys , Animal Feed/analysis
8.
Fam Process ; 62(2): 483-498, 2023 06.
Article En | MEDLINE | ID: mdl-35922893

This article contributes to the attachment versus differentiation debate, bringing the conversation to parent-child relationships. While attachment theory's (AT) approach emphasizes bonding, Bowen family systems theory's (BFST) differentiation approach emphasizes emotional boundaries. They both suggest that balancing autonomy and connection is important, but AT conceptualizes this in terms of the parent's ability to meet the child's needs for autonomy and connection, while BFST conceptualizes this in terms of the parent's and child's ability to be connected due to mutual respect for each other's emotional boundaries. They similarly recognize that: (1) emotionally mature parents respect children individuality, (2) emotionally immature parents may project their needs and wishes onto children, and (3) emotionally mature parents focus on calming themselves to help their children to be calm. They differ in that: (1) BFST suggests that children may project their needs and wishes onto their parents and intrude on their parents' emotional boundaries, and AT does not conceptualize this; (2) BFST suggests that caregiver over-involvement may be experienced as positive for a child and program them to be excessively needy, and AT suggests that caregiver over-involvement is negative for children and neediness is caused by under-involved caregiving; and (3) BFST suggests that therapists should not try to be a parent to their clients as this can replicate the fusion that the client experienced with their parents, and AT suggests that therapists should try to be like a good parent to their clients to help them to develop more secure attachment styles.


Emotions , Parents , Humans , Parents/psychology , Anxiety , Caregivers/psychology , Parent-Child Relations
9.
Poult Sci ; 101(10): 102009, 2022 Oct.
Article En | MEDLINE | ID: mdl-35952599

Colibacillosis in poultry is a unique disease manifestation of Escherichia coli in the animal world, as one of the primary routes of entry is via the respiratory tract of birds. Because of this, a novel extraintestinal pathogenic E. coli (ExPEC) subpathotype coined avian pathogenic E. coli (or APEC) has been described. Like other ExPEC, this pathotype has been challenging to clearly define, and in the case of APEC, its role as an opportunistic pathogen has further complicated these challenges. Using 3,479 temporally matched genomes of poultry-source isolates, we show that the APEC plasmid, previously considered a defining trait of APEC, is highly prevalent in clinical isolates from diseased turkeys. However, the plasmid is also quite prevalent among cecal E. coli isolates from healthy birds, including both turkeys and broilers. In contrast, we identify distinct differences in clonal backgrounds of turkey clinical versus cecal strains, with a subset of sequence types (STs) dominating the clinical landscape (ST23, ST117, ST131, ST355, and ST428), which are rare within the cecal landscape. Because the same clinical STs have also dominated the broiler landscape, we performed lethality assays using strains from dominant STs from clinical or cecal landscapes in embryonated turkey and chicken eggs. We show that, irrespective of plasmid carriage, dominant clinical STs are significantly more virulent than dominant cecal STs. We present a revised APEC screening tool that incorporates APEC plasmid carriage plus markers for dominant clinical STs. This revised APEC pathotyping tool improves the ability to identify high-risk APEC clones within poultry production systems, and identifies STs of interest for mitigation targets.


Escherichia coli Infections , Escherichia coli Proteins , Poultry Diseases , Animals , Chickens , Escherichia coli , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Phylogeny , Poultry , Turkeys , Virulence
10.
Mol Biol Cell ; 33(13): ar122, 2022 11 01.
Article En | MEDLINE | ID: mdl-36001360

Traffic of proteins out of the endoplasmic reticulum (ER) is driven by the COPII coat, a layered protein scaffold that mediates the capture of cargo proteins and the remodeling of the ER membrane into spherical vesicular carriers. Although the components of this machinery have been genetically defined, and the mechanisms of coat assembly extensively explored in vitro, understanding the physical mechanisms of membrane remodeling in cells remains a challenge. Here we use correlative light and electron microscopy (CLEM) to visualize the nanoscale ultrastructure of membrane remodeling at ER exit sites (ERES) in yeast cells. Using various COPII mutants, we have determined the broad contribution that each layer of the coat makes to membrane remodeling. Our data suggest that inner coat components define the radius of curvature, whereas outer coat components facilitate membrane fission. The organization of the coat in conjunction with membrane biophysical properties determines the ultrastructure of vesicles and thus the efficiency of protein transport.


COP-Coated Vesicles , Saccharomyces cerevisiae , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Microscopy, Electron , Protein Transport , Proteins/metabolism , Saccharomyces cerevisiae/metabolism
11.
Proc Natl Acad Sci U S A ; 119(31): e2202080119, 2022 08 02.
Article En | MEDLINE | ID: mdl-35901214

Protein secretion is an essential process that drives cell growth, movement, and communication. Protein traffic within the secretory pathway occurs via transport intermediates that bud from one compartment and fuse with a downstream compartment to deliver their contents. Here, we explore the possibility that protein secretion can be selectively inhibited by perturbing protein-protein interactions that drive capture into transport vesicles. Human proprotein convertase subtilisin/kexin type 9 (PCSK9) is a determinant of cholesterol metabolism whose secretion is mediated by a specific cargo adaptor protein, SEC24A. We map a series of protein-protein interactions between PCSK9, its endoplasmic reticulum (ER) export receptor SURF4, and SEC24A that mediate secretion of PCSK9. We show that the interaction between SURF4 and SEC24A can be inhibited by 4-phenylbutyrate (4-PBA), a small molecule that occludes a cargo-binding domain of SEC24. This inhibition reduces secretion of PCSK9 and additional SURF4 clients that we identify by mass spectrometry, leaving other secreted cargoes unaffected. We propose that selective small-molecule inhibition of cargo recognition by SEC24 is a potential therapeutic intervention for atherosclerosis and other diseases that are modulated by secreted proteins.


Endoplasmic Reticulum , Membrane Proteins , Proprotein Convertase 9 , Vesicular Transport Proteins , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Phenylbutyrates , Proprotein Convertase 9/metabolism , Protein Interaction Mapping , Protein Transport , Secretory Pathway , Vesicular Transport Proteins/metabolism
12.
Microbiol Resour Announc ; 11(7): e0038822, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35727013

Between 2018 and 2019, Salmonella enterica serotype Reading caused a large, multistate outbreak linked to contact with raw turkey products in the United States. Here, we provide five Salmonella Reading reference genomes collected from US patients between 2016 and 2018.

13.
Microbiol Spectr ; 10(3): e0106422, 2022 06 29.
Article En | MEDLINE | ID: mdl-35604132

Escherichia coli sequence type 131 (ST131) is a pandemic, multidrug-resistant extraintestinal pathogen. The multiple distinctive ST131 subclones differ for rfb and fliC alleles (O and H antigens), fimH allele (type-1 fimbriae adhesin), resistance phenotype and genotype, clinical correlates, and host predilection. Current PCR assays for detecting ST131 and its main subclones offer limited sub-ST characterization. Here we combined 22 novel and 14 published primers for a multiplex PCR assay to detect and extensively characterize ST131 isolates. The primers target mdh36, gyrB47, trpA72, sbmA, plsB, nupC, rmuC, kefC, ybbW, the O16 and O25b rfb variants, five fimH alleles (fimH22, fimH27, fimH30, fimH35, and fimH41), two fliC alleles (H4 and H5), a (subclone-specific) fluoroquinolone resistance-associated parC allele, and a (subclone-specific) prophage marker. The resulting amplicons resolve 15 molecular subsets within ST131, including 3 within clade A (H41 subclone), 5 within clade B (H22 subclone), and 7 within clade C (H30 subclone), which includes subclones C0 (H30S: 2 subsets), C1 and C1-M27 (H30R1: 2 subsets), and C2 (H30Rx: 3 subsets). Validation in three laboratories showed that this assay provides a rapid, accurate, and portable method for rapidly detecting and characterizing E. coli ST131 and its key subsets. Additionally, for users with whole genome sequencing (WGS) capability, we developed a command-line executable called ST131Typer, an in silico version of the extended multiplex PCR assay. Its accuracy was 87.8%, with most issues due to incomplete or fragmented input genome assemblies. These two novel assays should facilitate detailed ST131 subtyping using either endpoint PCR or WGS. IMPORTANCE These novel assays provide greater subclonal resolution and characterization of E. coli ST131 isolates than do the available comparable PCR assays, plus offer a novel sequence-based alternative to PCR. They may prove useful for molecular epidemiological studies, surveillance, and, potentially, clinical management.


Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents , Escherichia coli , Escherichia coli Proteins/genetics , Fluoroquinolones , Genotype , Humans , Multiplex Polymerase Chain Reaction , beta-Lactamases/genetics
14.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Article En | MEDLINE | ID: mdl-35484435

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Glucose Transport Proteins, Facilitative , Lipid Bilayers , Animals , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 3/metabolism , Humans , Lipid Bilayers/chemistry , Membrane Proteins/metabolism , Protein Folding , Protein Structure, Secondary
15.
Proc Natl Acad Sci U S A ; 119(11): e2113991119, 2022 03 15.
Article En | MEDLINE | ID: mdl-35271396

SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?


Hedgehog Proteins , Membrane Proteins , Proteoglycans , Endoplasmic Reticulum/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Transport/physiology , Proteoglycans/metabolism
16.
Science ; 374(6573): eabm4805, 2021 Dec 10.
Article En | MEDLINE | ID: mdl-34762488

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning­based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.


Deep Learning , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Interaction Mapping , Proteome/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Acyltransferases/chemistry , Acyltransferases/metabolism , Chromosome Segregation , Computational Biology , Computer Simulation , DNA Repair , Evolution, Molecular , Homologous Recombination , Ligases/chemistry , Ligases/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Protein Biosynthesis , Protein Conformation , Protein Interaction Maps , Proteome/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/chemistry , Ubiquitin/chemistry , Ubiquitin/metabolism
17.
Front Vet Sci ; 8: 692521, 2021.
Article En | MEDLINE | ID: mdl-34336979

Porcine proliferative enteropathy remains one of the most prevalent diseases in swine herds worldwide. This disease is caused by Lawsonia intracellularis, an intracellular bacterial pathogen that primarily colonizes the ileum. In this study, we evaluated changes to the microbiome of the ileal mucosa, ileal digesta, cecal digesta, and feces subsequent to challenge with L. intracellularis and to an oral live vaccine against L. intracellularis. Given that gut homogenates have been used since 1931 to study this disease, we also characterized the microbial composition of a gut homogenate from swine infected with L. intracellularis that was used as challenge material. The L. intracellularis challenge led to a dysbiosis of the microbiome of both the small and large intestine marked by an increase of pathobionts including Collinsella, Campylobacter, Chlamydia, and Fusobacterium. This microbiome response could play a role in favoring L. intracellularis colonization and disease as well as potentially predisposing to other diseases. Vaccination altered both small and large intestine microbiome community structure and led to a significant 3.03 log10 reduction in the amount of L. intracellularis shed by the challenged pigs. Vaccination also led to a significant decrease in the abundance of Collinsella, Fusobacterium, and Campylobacter among other microbial changes compared with non-vaccinated and challenged animals. These results indicate that L. intracellularis infection is associated with broad changes to microbiome composition in both the large and small intestine, many of which can be mitigated by vaccination.

18.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article En | MEDLINE | ID: mdl-34433667

The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.


Carrier Proteins/metabolism , Protein Transport , Transport Vesicles/metabolism , COP-Coated Vesicles/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Intracellular Membranes/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Secretory Pathway
19.
J Anim Sci Biotechnol ; 12(1): 59, 2021 May 05.
Article En | MEDLINE | ID: mdl-33947458

BACKGROUND: Microbiota development is a critical aspect of turkey poult maturation, and the succession of microbes in the turkey gut has been shown to correlate with poult performance. The purpose of this study was to determine the fate of the microbiota in turkey poults after movement of birds first raised in an isolated hatch brood system into a more traditional commercial brood facility with pre-existing birds. Turkey poults were first divided into groups raised in conventional brood pens from day-of-hatch and those raised in an experimental hatch brood system. After 11 days of growth, hatch brood birds were moved into pens within the conventional brood barn and monitored for an additional 18 days. Sampling of both hatch brood and conventional pen birds was performed at multiple timepoints throughout the study, and cecal content was used to analyze the bacterial microbiota using 16S rRNA gene amplicon sequencing. RESULTS: Alpha diversity tended to be higher in samples from conventional pen birds compared to those from hatch brood birds prior to the day 11 move, but the difference between systems was not observed post-move. Using beta diversity metrics, bacterial community succession appeared delayed in the hatch brood system birds pre-move, but post-move community composition quickly converged with that of the conventional pen birds. This was validated through assessment of significantly different genera between hatch brood system and conventional pen birds, where numbers of significantly different taxa quickly decreased following the move. Some key taxa previously associated with poult performance were delayed in their appearance and relative abundance in hatch brood birds. CONCLUSIONS: Overall, this study demonstrates that the use of isolated hatch brood systems has an impact on the poult gut microbiota, but its impact is resolved quickly once the birds are introduced into a conventional brood environment. Therefore, the benefits of pathogen reduction with hatch brood systems may outweigh negative microbiota impacts due to isolation.

20.
EMBO J ; 40(12): e107607, 2021 06 15.
Article En | MEDLINE | ID: mdl-34018207

The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.


Saccharomyces cerevisiae Proteins/chemistry , Vesicular Transport Proteins/chemistry , rab GTP-Binding Proteins/chemistry , Cryoelectron Microscopy , Guanine Nucleotide Exchange Factors/chemistry , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Protein Conformation , Saccharomyces cerevisiae Proteins/ultrastructure , Vesicular Transport Proteins/ultrastructure , rab GTP-Binding Proteins/ultrastructure
...