Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 137
1.
Nat Commun ; 15(1): 3941, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729937

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Acoustic Stimulation , Auditory Cortex , Callithrix , Electrocorticography , Animals , Auditory Cortex/physiology , Callithrix/physiology , Male , Female , Evoked Potentials/physiology , Frontal Lobe/physiology , Evoked Potentials, Auditory/physiology , Auditory Perception/physiology , Brain Mapping/methods
2.
J Neurosci Methods ; 407: 110153, 2024 Jul.
Article En | MEDLINE | ID: mdl-38710234

Human brain connectivity can be mapped by single pulse electrical stimulation during intracranial EEG measurements. The raw cortico-cortical evoked potentials (CCEP) are often contaminated by noise. Common average referencing (CAR) removes common noise and preserves response shapes but can introduce bias from responsive channels. We address this issue with an adjusted, adaptive CAR algorithm termed "CAR by Least Anticorrelation (CARLA)". CARLA was tested on simulated CCEP data and real CCEP data collected from four human participants. In CARLA, the channels are ordered by increasing mean cross-trial covariance, and iteratively added to the common average until anticorrelation between any single channel and all re-referenced channels reaches a minimum, as a measure of shared noise. We simulated CCEP data with true responses in 0-45 of 50 total channels. We quantified CARLA's error and found that it erroneously included 0 (median) truly responsive channels in the common average with ≤42 responsive channels, and erroneously excluded ≤2.5 (median) unresponsive channels at all responsiveness levels. On real CCEP data, signal quality was quantified with the mean R2 between all pairs of channels, which represents inter-channel dependency and is low for well-referenced data. CARLA re-referencing produced significantly lower mean R2 than standard CAR, CAR using a fixed bottom quartile of channels by covariance, and no re-referencing. CARLA minimizes bias in re-referenced CCEP data by adaptively selecting the optimal subset of non-responsive channels. It showed high specificity and sensitivity on simulated CCEP data and lowered inter-channel dependency compared to CAR on real CCEP data.


Algorithms , Cerebral Cortex , Evoked Potentials , Signal Processing, Computer-Assisted , Humans , Evoked Potentials/physiology , Cerebral Cortex/physiology , Male , Electrocorticography/methods , Electroencephalography/methods , Adult , Electric Stimulation , Computer Simulation , Female
3.
J Neurosurg ; : 1-6, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489816

OBJECTIVE: Conventional frame-based stereotactic systems have circumferential base frames, often necessitating deep brain stimulation (DBS) surgery in two stages: intracranial electrode insertion followed by surgical re-preparation and pulse generator implantation. Some patients do not tolerate awake surgery, underscoring the need for a safe alternative for asleep DBS surgery. A frame-based stereotactic system with a skull-mounted "key" in lieu of a circumferential base frame received US FDA clearance. The authors describe the system's application for single-stage, asleep DBS surgery in 8 patients at their institution and review its workflow and technical considerations. METHODS: Eight patients underwent DBS lead insertion and IPG implantation in a single surgical preparation under general anesthesia using the system. Postoperative CT imaging confirmed lead placement. RESULTS: Eight patients underwent implantation of 15 total leads targeting the ventral intermediate nucleus (4 patients), globus pallidus internus (GPi; 3 patients), and subthalamic nucleus (STN; 1 patient). Intraoperative microelectrode recording was conducted for GPi and STN targets. Postoperative CT imaging revealed a mean ± SD radial error of 1.24 ± 0.45 mm (n = 15 leads), without surgical complications. CONCLUSIONS: The stereotactic system facilitated safe and effective asleep, single-stage DBS surgery, maintaining traditional lead accuracy standards.

4.
bioRxiv ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38496670

Introduction: Stereoelectroencephalography (sEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG are not in full agreement or definitively localizing, implanted sEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation. If a SOZ is eloquent, resection and ablation are both contraindicated, so identifying functional representation is crucial for therapeutic decision making. Objective: We present a novel functional brain mapping technique that utilizes task-based electrophysiological changes in sEEG during behavioral tasks and test this in pediatric and adult patients. Methods: sEEG was recorded in twenty patients with epilepsy, aged 6-39 (12 female, 18 of 20 patients < 21 years old), who underwent implanted monitoring to identify seizure onset. Each performed 1) visually cued simple repetitive movements of the hand, foot, or tongue while electromyography was recorded, and 2) simple picture naming or verb generation speech tasks while audio was recorded. Broadband changes in the power spectrum of the sEEG were compared between behavior and rest. Results: Electrophysiological functional mapping of movement and/or speech areas was completed in all 20 patients. Eloquent representation was identified in both cortex and white matter, and generally corresponded to classically described functional anatomic organization as well as other clinical mapping results. Robust maps of brain activity were identified in healthy brain, regions of developmental or acquired structural abnormality, and SOZs. Conclusion: Task based electrophysiological mapping using broadband changes in the sEEG signal reliably identifies movement and speech representation in pediatric and adult epilepsy patients.

5.
medRxiv ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38496621

Deep brain stimulation (DBS) is a viable treatment for a variety of neurological conditions, however, the mechanisms through which DBS modulates large-scale brain networks are unresolved. Clinical effects of DBS are observed over multiple timescales. In some conditions, such as Parkinson's disease and essential tremor, clinical improvement is observed within seconds. In many other conditions, such as epilepsy, central pain, dystonia, neuropsychiatric conditions or Tourette syndrome, the DBS related effects are believed to require neuroplasticity or reorganization and often take hours to months to observe. To optimize DBS parameters, it is therefore essential to develop electrophysiological biomarkers that characterize whether DBS settings are successfully engaging and modulating the network involved in the disease of interest. In this study, 10 individuals with drug resistant epilepsy undergoing intracranial stereotactic EEG including a thalamus electrode underwent a trial of repetitive thalamic stimulation. We evaluated thalamocortical effective connectivity using single pulse electrical stimulation, both at baseline and following a 145 Hz stimulation treatment trial. We found that when high frequency stimulation was delivered for >1.5 hours, the evoked potentials measured from remote regions were significantly reduced in amplitude and the degree of modulation was proportional to the strength of baseline connectivity. When stimulation was delivered for shorter time periods, results were more variable. These findings suggest that changes in effective connectivity in the network targeted with DBS accumulate over hours of DBS. Stimulation evoked potentials provide an electrophysiological biomarker that allows for efficient data-driven characterization of neuromodulation effects, which could enable new objective approaches for individualized DBS optimization.

6.
Sci Rep ; 14(1): 6527, 2024 03 19.
Article En | MEDLINE | ID: mdl-38499709

Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain-computer interfacing (BCI), rehabilitation, and mental health.


Brain Mapping , Brain , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Head , Electroencephalography/methods , Electrodes, Implanted , Electrodes
7.
J Neural Eng ; 21(2)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38484397

Objective.This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus, and posterior hippocampus over an extended period.Approach.Impedance was periodically sampled every 5-15 min over several months in five subjects with drug-resistant epilepsy using an investigational neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24 h impedance cycle throughout the multi-month recording.Main results.Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 d to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24 h impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures.Significance.Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.


Deep Brain Stimulation , Foreign Bodies , Humans , Electric Impedance , Brain/physiology , Electrodes, Implanted , Deep Brain Stimulation/methods
8.
medRxiv ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38343858

Objective: This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus (AMG-HPC), and posterior hippocampus (post-HPC) over an extended period. Approach: Impedance was periodically sampled every 5-15 minutes over several months in five subjects with drug-resistant epilepsy using an experimental neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24-hour impedance cycle throughout the multi-month recording. Main results: Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 days to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24-hour impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures. Significance: Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.

9.
medRxiv ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38405801

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

10.
medRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38370724

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

11.
bioRxiv ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38260687

Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.

13.
Clin Neurophysiol ; 155: 86-93, 2023 11.
Article En | MEDLINE | ID: mdl-37806180

OBJECTIVE: Intracranial hemorrhage (ICH) is a known complication during stereo-electroencephalography (sEEG) however true rates remain unknown. We provide a comprehensive review of ICH during sEEG regardless of clinical symptoms. Secondly, we analyzed sEEG recordings to identify electrographic correlates of ICH. METHODS: This is a retrospective study of patients undergoing sEEG between January 2016 and April 2022 at the Mayo Clinic in Rochester. We reviewed medical records and imaging studies to identify ICH. We analyzed ICH by type, electrode trajectories, timing, sEEG findings and outcomes. RESULTS: There were a total of 201 sEEG implants, of which 23 (11%) cases or 0.9% electrodes implanted had evidence of ICH. The majority of affected patients (82%) were either asymptomatic or had mild clinical neurological manifestations. In 90% of patients who proceeded with surgical treatments, outcomes were favorable. The most common sEEG finding in contacts in proximity of ICH was either focal slowing with interictal discharges or focal electrographic seizures. CONCLUSIONS: ICH associated with sEEG is likely under-reported in literature. We present electroencephalographic correlates of ICH that may aid identification of ICH in the course of performing sEEG monitoring. SIGNIFICANCE: Our data provides clinically relevant information on potential risks and outcomes of ICH. Furthermore, our findings aid identification of ICH during sEEG.


Drug Resistant Epilepsy , Electroencephalography , Humans , Retrospective Studies , Electrodes, Implanted , Electroencephalography/methods , Seizures/surgery , Stereotaxic Techniques , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/etiology , Drug Resistant Epilepsy/surgery
14.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Article En | MEDLINE | ID: mdl-37620157

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Sleep, REM , Sleep , Humans , Electric Impedance , Sleep/physiology , Sleep, REM/physiology , Brain/physiology , Wakefulness/physiology , Hippocampus
15.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Article En | MEDLINE | ID: mdl-37620159

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Anterior Thalamic Nuclei , Epilepsy , Humans , Male , Female , Limbic System/physiology , Electroencephalography , Evoked Potentials/physiology , Electric Stimulation
16.
J Neural Eng ; 20(4)2023 08 10.
Article En | MEDLINE | ID: mdl-37536320

Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.


Sleep Stages , Sleep , Dogs , Animals , Sleep Stages/physiology , Sleep/physiology , Sleep, REM/physiology , Electroencephalography/methods , Electrocorticography , Wakefulness/physiology
17.
Nature ; 621(7978): 381-388, 2023 Sep.
Article En | MEDLINE | ID: mdl-37648849

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Hippocampus , Neural Pathways , Orexins , Humans , Body Mass Index , Cohort Studies , Cues , Electrophysiology , Evoked Potentials/physiology , Feeding and Eating Disorders/metabolism , Feeding Behavior , Food , Hippocampus/anatomy & histology , Hippocampus/cytology , Hippocampus/metabolism , Obesity/metabolism , Orexins/metabolism
18.
J Neurosurg Pediatr ; 32(4): 413-420, 2023 10 01.
Article En | MEDLINE | ID: mdl-37486856

H3 K27-altered diffuse midline gliomas (DMGs) are frequently biopsied to obtain tissue diagnosis, inform clinical decision-making, and determine clinical trial eligibility. Tissue yield from biopsies is typically low, leaving little material available for research. To advance understanding of disease biology and promote preclinical testing of novel therapeutics, collecting viable cellular material from treatment-naive tumors is of paramount importance. Here, the authors report the feasibility of a practicable technique for creating DMG cell lines and patient-derived xenografts (PDXs) without the need for additional biopsy specimens. Tumor cells are obtained by probe washing immediately after completion of biopsy. Wash fluid is collected, and viable cells are expanded in vitro. Cultured cells are used to establish PDX rodent models. A total of 5 patient samples were collected by this technique. Viable tumor cells were obtained from 3 of the 5 samples, and cell lines suitable for experiments were obtained within 6-8 months. Orthotopic implantation and flank engraftment was successful in 1 of the 3 established cell lines. Animals harboring intracranial tumors were euthanized due to disease burden 6-7 months after stereotactic injection. Flank tumors formed within 4-5 months and were serially passaged. Molecular and tissue analyses confirmed retention of H3 K27M expression and loss of H3 K27me3 in all cell lines and PDXs.


Brain Neoplasms , Glioma , Animals , Humans , Glioma/pathology , Histones/genetics , Heterografts , Feasibility Studies , Brain Neoplasms/pathology , Biopsy , Biopsy, Needle , Cell Line , Mutation
19.
Commun Biol ; 6(1): 653, 2023 06 20.
Article En | MEDLINE | ID: mdl-37340056

The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05-10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour.


Brain Neoplasms , Glioma , Humans , Brain Neoplasms/metabolism , Blood-Brain Barrier/metabolism , Glioma/metabolism , Brain/metabolism , Metabolome , Tumor Microenvironment
20.
J Neurosci ; 43(24): 4434-4447, 2023 06 14.
Article En | MEDLINE | ID: mdl-37188514

The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.


Cerebral Cortex , Temporal Lobe , Humans , Female , Temporal Lobe/physiology , Evoked Potentials/physiology , Hippocampus , Brain Mapping/methods , Electric Stimulation/methods
...