Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 29(6): 100176, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122117

RESUMEN

Agonists of the secretin receptor have potential applications for diseases of the cardiovascular, gastrointestinal, and metabolic systems, yet no clinically-active non-peptidyl agonists of this receptor have yet been developed. In the current work, we have identified a new small molecule lead compound with this pharmacological profile. We have prepared and characterized a systematic structure-activity series around this thiadiazole scaffold to better understand the molecular determinants of its activity. We were able to enhance the in vitro activity and to maintain the specificity of the parent compound. We found the most active candidate to be quite stable in plasma, although it was metabolized by hepatic microsomes. This chemical probe should be useful for in vitro studies and needs to be tested for in vivo pharmacological activity. This could be an important lead toward the development of a first-in-class orally active agonist of the secretin receptor, which could be useful for multiple disease states.

2.
Res Sq ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39070646

RESUMEN

The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells. Here, we present development and use of a novel method capable of overcoming existing challenges by combining distributions (or spectrograms) of FRET efficiencies from populations of fluorescently tagged proteins associating into oligomeric complexes in live cells with diffusion-like trajectories of FRET donors and acceptors obtained from molecular dynamics (MD) simulations. Our approach provides an atom-level picture of the binding interfaces within oligomers of the human secretin receptor (hSecR) in live cells and allows for extraction of mechanistic insights into the function of GPCRs oligomerization. This FRET-MD spectrometry approach is a robust platform for investigating protein-protein binding mechanisms and opens a new avenue for investigating stable as well as fleeting quaternary structures of any membrane proteins in living cells.

3.
PLoS Biol ; 22(7): e3002673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083706

RESUMEN

Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.


Asunto(s)
Colesterol , Proteínas de Unión al GTP , Unión Proteica , Receptor de Colecistoquinina A , Receptor de Colecistoquinina B , Animales , Humanos , Células CHO , Colesterol/metabolismo , Cricetulus , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Células HEK293 , Ligandos , Mutación , Conformación Proteica , Receptor de Colecistoquinina A/metabolismo , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina B/metabolismo , Receptor de Colecistoquinina B/genética
4.
Nat Commun ; 15(1): 4390, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782989

RESUMEN

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.


Asunto(s)
Unión Proteica , Multimerización de Proteína , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , Secretina , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Secretina/metabolismo , Secretina/química , Secretina/genética , Ligandos , Animales , Humanos , Cricetulus , Células CHO , Mutación , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA