Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 2(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38108061

RESUMEN

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).

2.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398366

RESUMEN

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of exosomes that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral exosomes from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of exosome release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in exosome content, including basal-side specific desmosome and hemidesmosome shedding via exosomes. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases, (e.g., AMD) and broadly from blood-CNS barriers in other neurodegenerative diseases.

3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077335

RESUMEN

The retina and RPE cells are regularly exposed to chronic oxidative stress as a tissue with high metabolic demand and ROS generation. DJ-1 is a multifunctional protein in the retina and RPE that has been shown to protect cells from oxidative stress in several cell types robustly. Oxidation of DJ-1 cysteine (C) residues is important for its function under oxidative conditions. The present study was conducted to analyze the impact of DJ-1 expression changes and oxidation of its C residues on RPE function. Monolayers of the ARPE-19 cell line and primary human fetal RPE (hfRPE) cultures were infected with replication-deficient adenoviruses to investigate the effects of increased levels of DJ-1 in these monolayers. Adenoviruses carried the full-length human DJ-1 cDNA (hDJ) and mutant constructs of DJ-1, which had all or each of its three C residues individually mutated to serine (S). Alternatively, endogenous DJ-1 levels were decreased by transfection and transduction with shPARK7 lentivirus. These monolayers were then assayed under baseline and low oxidative stress conditions. The results were analyzed by immunofluorescence, Western blot, RT-PCR, mitochondrial membrane potential, and viability assays. We determined that decreased levels of endogenous DJ-1 levels resulted in increased levels of ROS. Furthermore, we observed morphological changes in the mitochondria structure of all the RPE monolayers transduced with all the DJ-1 constructs. The mitochondrial membrane potential of ARPE-19 monolayers overexpressing all DJ-1 constructs displayed a significant decrease, while hfRPE monolayers only displayed a significant decrease in their ΔΨm when overexpressing the C2S mutation. Viability significantly decreased in ARPE-19 cells transduced with the C53S construct. Our data suggest that the oxidation of C53 is crucial for regulating endogenous levels of ROS and viability in RPE cells.


Asunto(s)
Cisteína , Epitelio Pigmentado de la Retina , Cisteína/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
4.
J Am Soc Nephrol ; 31(7): 1539-1554, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32487559

RESUMEN

BACKGROUND: Aberrant microRNA (miRNA) expression affects biologic processes and downstream genes that are crucial to CKD initiation or progression. The miRNA miR-204-5p is highly expressed in the kidney but whether miR-204-5p plays any role in the development of chronic renal injury is unknown. METHODS: We used real-time PCR to determine levels of miR-204 in human kidney biopsies and animal models. We generated Mir204 knockout mice and used locked nucleic acid-modified anti-miR to knock down miR-204-5p in mice and rats. We used a number of physiologic, histologic, and molecular techniques to analyze the potential role of miR-204-5p in three models of renal injury. RESULTS: Kidneys of patients with hypertension, hypertensive nephrosclerosis, or diabetic nephropathy exhibited a significant decrease in miR-204-5p compared with controls. Dahl salt-sensitive rats displayed lower levels of renal miR-204-5p compared with partially protected congenic SS.13BN26 rats. Administering anti-miR-204-5p to SS.13BN26 rats exacerbated interlobular artery thickening and renal interstitial fibrosis. In a mouse model of hypertensive renal injury induced by uninephrectomy, angiotensin II, and a high-salt diet, Mir204 gene knockout significantly exacerbated albuminuria, renal interstitial fibrosis, and interlobular artery thickening, despite attenuation of hypertension. In diabetic db/db mice, administering anti-miR-204-5p exacerbated albuminuria and cortical fibrosis without influencing blood glucose levels. In all three models, inhibiting miR-204-5p or deleting Mir204 led to upregulation of protein tyrosine phosphatase SHP2, a target gene of miR-204-5p, and increased phosphorylation of signal transducer and activator of transcription 3, or STAT3, which is an injury-promoting effector of SHP2. CONCLUSIONS: These findings indicate that the highly expressed miR-204-5p plays a prominent role in safeguarding the kidneys against common causes of chronic renal injury.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Riñón/patología , MicroARNs/metabolismo , Nefroesclerosis/metabolismo , Adulto , Albuminuria/genética , Animales , Arterias/patología , Presión Sanguínea/efectos de los fármacos , Nefropatías Diabéticas/patología , Femenino , Fibrosis , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Persona de Mediana Edad , Nefroesclerosis/etiología , Nefroesclerosis/patología , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Cloruro de Sodio Dietético/administración & dosificación , Regulación hacia Arriba
5.
Nat Commun ; 8: 15374, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28524846

RESUMEN

The outer blood-retina barrier is established through the coordinated terminal maturation of the retinal pigment epithelium (RPE), fenestrated choroid endothelial cells (ECs) and Bruch's membrane, a highly organized basement membrane that lies between both cell types. Here we study the contribution of choroid ECs to this process by comparing their gene expression profile before (P5) and after (P30) the critical postnatal period when mice acquire mature visual function. Transcriptome analyses show that expression of extracellular matrix-related genes changes dramatically over this period. Co-culture experiments support the existence of a novel regulatory pathway: ECs secrete factors that remodel RPE basement membrane, and integrin receptors sense these changes triggering Rho GTPase signals that modulate RPE tight junctions and enhance RPE barrier function. We anticipate our results will spawn a search for additional roles of choroid ECs in RPE physiology and disease.


Asunto(s)
Membrana Basal/metabolismo , Lámina Basal de la Coroides/metabolismo , Matriz Extracelular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Uniones Estrechas/metabolismo , Animales , Biotinilación , Barrera Hematorretinal/metabolismo , Adhesión Celular , Supervivencia Celular , Células Cultivadas , Coroides/metabolismo , Técnicas de Cocultivo , Electrorretinografía , Femenino , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Permeabilidad , Proteína-Lisina 6-Oxidasa/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
6.
Artículo en Inglés | MEDLINE | ID: mdl-28286868

RESUMEN

The retinal pigment epithelium (RPE) is a monolayer of highly specialized cells that help maintain the chemical composition of its surrounding subretinal and choroidal extracellular spaces. Retinal cells (photoreceptors in particular), RPE, and choroidal endothelial cells together help ensure a homeostatically stable metabolic environment with exquisitely sensitive functional responses to light. Aging and disease of the RPE impairs its supportive functions contributing to the progressive loss of photoreceptors and vision. The prevalence of RPE associated retinal degenerations has prompted researchers to develop new therapies aimed at replacing the affected RPE with induced pluripotent stem cell (iPSC) or embryonic stem cell (ESC) derived RPE. Despite recent attempts to characterize stem cell derived RPE and to truly authenticate RPE for clinical applications, there remains a significant unmet need to explore the heterogeneity resulting from donor to donor variation as well as the variations inherent in the current processes of cell manufacture. Additionally, it remains unknown whether the starting cell type influences the resulting RPE phenotype following reprogramming and differentiation. To address these questions, we performed a comprehensive evaluation (genomic, structural, and functional) of 15 iPSC derived RPE originating from different donors and tissues and compiled a reference data set for the authentication of iPSC-derived RPE and RPE derived from other stem cell sources.

7.
Invest Ophthalmol Vis Sci ; 57(11): 4641-54, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27603725

RESUMEN

PURPOSE: The purpose of this study was to examine the rpea1 mouse whose retina spontaneously detaches from the underlying RPE as a potential model for studying the cellular effects of serous retinal detachment (SRD). METHODS: Optical coherence tomography (OCT) was performed immediately prior to euthanasia; retinal tissue was subsequently prepared for Western blotting, microarray analysis, immunocytochemistry, and light and electron microscopy (LM, EM). RESULTS: By postnatal day (P) 30, OCT, LM, and EM revealed the presence of small shallow detachments that increased in number and size over time. By P60 in regions of detachment, there was a dramatic loss of PNA binding around cones in the interphotoreceptor matrix and a concomitant increase in labeling of the outer nuclear layer and rod synaptic terminals. Retinal pigment epithelium wholemounts revealed a patchy loss in immunolabeling for both ezrin and aquaporin 1. Anti-ezrin labeling was lost from small regions of the RPE apical surface underlying detachments at P30. Labeling for tight-junction proteins provided a regular array of profiles outlining the periphery of RPE cells in wild-type tissue, however, this pattern was disrupted in the mutant as early as P30. Microarray analysis revealed a broad range of changes in genes involved in metabolism, signaling, cell polarity, and tight-junction organization. CONCLUSIONS: These data indicate changes in this mutant mouse that may provide clues to the underlying mechanisms of SRD in humans. Importantly, these changes include the production of multiple spontaneous detachments without the presence of a retinal tear or significant degeneration of outer segments, changes in the expression of proteins involved in adhesion and fluid transport, and a disrupted organization of RPE tight junctions that may contribute to the formation of focal detachments.


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Expresión Génica , Desprendimiento de Retina/genética , Epitelio Pigmentado de la Retina/ultraestructura , Tomografía de Coherencia Óptica/métodos , Animales , Atrofia , Western Blotting , Proteínas del Ojo/biosíntesis , Angiografía con Fluoresceína , Fondo de Ojo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Desprendimiento de Retina/metabolismo , Desprendimiento de Retina/patología
8.
Stem Cells Transl Med ; 5(11): 1562-1574, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27400791

RESUMEN

: Induced pluripotent stem cells (iPSCs) can be efficiently differentiated into retinal pigment epithelium (RPE), offering the possibility of autologous cell replacement therapy for retinal degeneration stemming from RPE loss. The generation and maintenance of epithelial apical-basolateral polarity is fundamental for iPSC-derived RPE (iPSC-RPE) to recapitulate native RPE structure and function. Presently, no criteria have been established to determine clonal or donor based heterogeneity in the polarization and maturation state of iPSC-RPE. We provide an unbiased structural, molecular, and physiological evaluation of 15 iPSC-RPE that have been derived from distinct tissues from several different donors. We assessed the intact RPE monolayer in terms of an ATP-dependent signaling pathway that drives critical aspects of RPE function, including calcium and electrophysiological responses, as well as steady-state fluid transport. These responses have key in vivo counterparts that together help determine the homeostasis of the distal retina. We characterized the donor and clonal variation and found that iPSC-RPE function was more significantly affected by the genetic differences between different donors than the epigenetic differences associated with different starting tissues. This study provides a reference dataset to authenticate genetically diverse iPSC-RPE derived for clinical applications. SIGNIFICANCE: The retinal pigment epithelium (RPE) is essential for maintaining visual function. RPE derived from human induced pluripotent stem cells (iPSC-RPE) offer a promising cell-based transplantation therapy for slowing or rescuing RPE-induced visual function loss. For effective treatment, iPSC-RPE must recapitulate the physiology of native human RPE. A set of physiologically relevant functional assays are provided that assess the polarized functional activity and maturation state of the intact RPE monolayer. The present data show that donor-to-donor variability exceeds the tissue-to-tissue variability for a given donor and provides, for the first time, criteria necessary to identify iPSC-RPE most suitable for clinical application.

9.
Invest Ophthalmol Vis Sci ; 55(2): 1191-202, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573369

RESUMEN

Biomedical advances in vision research have been greatly facilitated by the clinical accessibility of the visual system, its ease of experimental manipulation, and its ability to be functionally monitored in real time with noninvasive imaging techniques at the level of single cells and with quantitative end-point measures. A recent example is the development of stem cell-based therapies for degenerative eye diseases including AMD. Two phase I clinical trials using embryonic stem cell-derived RPE are already underway and several others using both pluripotent and multipotent adult stem cells are in earlier stages of development. These clinical trials will use a variety of cell types, including embryonic or induced pluripotent stem cell-derived RPE, bone marrow- or umbilical cord-derived mesenchymal stem cells, fetal neural or retinal progenitor cells, and adult RPE stem cells-derived RPE. Although quite distinct, these approaches, share common principles, concerns and issues across the clinical development pipeline. These considerations were a central part of the discussions at a recent National Eye Institute meeting on the development of cellular therapies for retinal degenerative disease. At this meeting, emphasis was placed on the general value of identifying and sharing information in the so-called "precompetitive space." The utility of this behavior was described in terms of how it could allow us to remove road blocks in the clinical development pipeline, and more efficiently and economically move stem cell-based therapies for retinal degenerative diseases toward the clinic. Many of the ocular stem cell approaches we discuss are also being used more broadly, for nonocular conditions and therefore the model we develop here, using the precompetitive space, should benefit the entire scientific community.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Degeneración Retiniana/terapia , Trasplante de Células Madre/métodos , Animales , Ingeniería Celular , Ensayos Clínicos como Asunto , Congresos como Asunto , Conducta Cooperativa , Modelos Animales de Enfermedad , Células Madre Embrionarias/trasplante , Humanos , National Eye Institute (U.S.) , Células Madre Pluripotentes/trasplante , Medicina Regenerativa , Investigación Biomédica Traslacional , Estados Unidos
10.
PLoS One ; 6(9): e23148, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912637

RESUMEN

Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRß, gp130, and OsMRß, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase). CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFß2. It also significantly increases fluid absorption (J(V)) across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease.


Asunto(s)
Líquidos Corporales/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Absorción , Membrana Celular/metabolismo , Polaridad Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Feto/citología , Regulación de la Expresión Génica , Humanos , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oncostatina M/genética , Oncostatina M/metabolismo , Transportador 1 de Catión Orgánico/genética , Fagocitosis , Fosforilación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptor de Factor Neurotrófico Ciliar/metabolismo , Epitelio Pigmentado de la Retina/citología , Factor de Transcripción STAT3/metabolismo
11.
Pigment Cell Melanoma Res ; 24(1): 21-34, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20846177

RESUMEN

Compared with neural crest-derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light-absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11-cis-retinal by re-isomerizing all-trans-retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors' outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age-related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE-like cells can be obtained relatively easily when stem cells are subjected to a two-step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Epitelio Pigmentado de la Retina/citología , Animales , Humanos , Epitelio Pigmentado de la Retina/inmunología , Visión Ocular
12.
J Vis Exp ; (45)2010 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-21085105

RESUMEN

We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Feto/citología , Humanos , Epitelio Pigmentado de la Retina/embriología
13.
FASEB J ; 24(5): 1552-71, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20056717

RESUMEN

MicroRNA (miRNA) expression in fetal human retinal pigment epithelium (hfRPE), retina, and choroid were pairwise compared to determine those miRNAs that are enriched by 10-fold or more in each tissue compared with both of its neighbors. miRs-184, 187, 200a/200b, 204/211, and 221/222 are enriched in hfRPE by 10- to 754-fold compared with neuroretina or choroid (P<0.05). Five of these miRNAs are enriched in RPE compared with 20 tissues throughout the body and are 10- to 20,000-fold more highly expressed (P<0.005). miR-204 and 211 are the most highly expressed in the RPE. In addition, expression of miR-204/211 is significantly lower in the NCI60 tumor cell line panel compared with that in 13 normal tissues, suggesting the progressive disruption of epithelial barriers and increased proliferation. We demonstrated that TGF-beta receptor 2 (TGF-betaR2) and SNAIL2 are direct targets of miR-204 and that a reduction in miR-204 expression leads to reduced expression of claudins 10, 16, and 19 (message/protein) consistent with our observation that anti-miR-204/211 decreased transepithelial resistance by 80% and reduced cell membrane voltage and conductance. The anti-miR-204-induced decrease in Kir7.1 protein levels suggests a signaling pathway that connects TGF-betaR2 and maintenance of potassium homeostasis. Overall, these data indicate a critical role for miR-204/211 in maintaining epithelial barrier function and cell physiology.


Asunto(s)
Barrera Hematorretinal/fisiología , MicroARNs/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Secuencia de Bases , Línea Celular Tumoral , Coroides/citología , Coroides/metabolismo , Coroides/fisiología , Claudinas/genética , Feto , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Canales de Potasio de Rectificación Interna/biosíntesis , Canales de Potasio de Rectificación Interna/genética , Proteínas Serina-Treonina Quinasas/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
14.
Am J Physiol Cell Physiol ; 297(6): C1452-65, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19794146

RESUMEN

The present experiments show that IFNgamma receptors are mainly localized to the basolateral membrane of human retinal pigment epithelium (RPE). Activation of these receptors in primary cultures of human fetal RPE inhibited cell proliferation and migration, decreased RPE mitochondrial membrane potential, altered transepithelial potential and resistance, and significantly increased transepithelial fluid absorption. These effects are mediated through JAK-STAT and p38 MAPK signaling pathways. Second messenger signaling through cAMP-PKA pathway- and interferon regulatory factor-1-dependent production of nitric oxide/cGMP stimulated the CFTR at the basolateral membrane and increased transepithelial fluid absorption. In vivo experiments using a rat model of retinal reattachment showed that IFNgamma applied to the anterior surface of the eye can remove extra fluid deposited in the extracellular or subretinal space between the retinal photoreceptors and RPE. Removal of this extra fluid was blocked by a combination of PKA and JAK-STAT pathway inhibitors injected into the subretinal space. These results demonstrate a protective role for IFNgamma in regulating retinal hydration across the outer blood-retinal barrier in inflammatory disease processes and provide the basis for possible therapeutic interventions.


Asunto(s)
Líquidos Corporales/metabolismo , Interferón gamma/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Absorción , Adulto , Animales , Transporte Biológico/efectos de los fármacos , Líquidos Corporales/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Coroides/embriología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Feto/citología , Feto/metabolismo , Humanos , Factor 1 Regulador del Interferón/metabolismo , Quinasas Janus/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/fisiología , Ratas , Receptores de Interferón/metabolismo , Desprendimiento de Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/embriología , Factores de Transcripción STAT/metabolismo , Sistemas de Mensajero Secundario/fisiología , Distribución Tisular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Receptor de Interferón gamma
15.
Invest Ophthalmol Vis Sci ; 50(12): 5988-96, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19608542

RESUMEN

PURPOSE: The aim of this study was to determine the expression and localization of integrin alpha5beta1 in human retinal pigment epithelium (RPE) and its ability to modulate RPE cell attachment, proliferation, migration, and F-actin cytoskeleton distribution. METHODS: Expression and localization of alpha5beta1 were analyzed on human RPE by immunoblot/immunofluorescence. Polarized secretion of fibronectin was measured. RPE attachments to different substrates were determined using cell attachment screening kits. BrdU incorporation and wound-healing assays were used to test hfRPE proliferation and migration. F-actin cytoskeleton was visualized with phalloidin. RESULTS: Integrin alpha5beta1 was detected in native adult and fetal human RPE. The alpha5-subunit is predominantly localized at the apical membrane of hfRPE, whereas the beta1-subunit is uniformly detected at the apical/basolateral membranes. The authors also found that hfRPE cultures secrete significant amounts of fibronectin to the apical bath. JSM6427, a specific integrin alpha5beta1 antagonist, significantly inhibited hfRPE cell attachment to fibronectin, but not laminin, or collagen I or IV. JSM6427 also showed a strong inhibitory effect on bFGF, PDGF-BB, and serum-induced cell migration and proliferation. Furthermore, JSM6427 induced significant disruption of the F-actin cytoskeleton of dividing RPE cells but had no effect on quiescent cells. CONCLUSIONS: The apical localization of alpha5beta1 and the secretion of fibronectin to the apical bath suggest the presence of an autocrine loop that can guide the migration of RPE. The strong inhibitory effects of JSM6427 on human RPE cell attachment, proliferation, and migration is probably mediated by F-actin cytoskeletal disruption in proliferating cells and suggests a potential clinical use of this compound in proliferative retinopathies.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Integrina alfa5beta1/fisiología , Enfermedades de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Actinas/metabolismo , Adhesión Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Immunoblotting , Integrina alfa5beta1/antagonistas & inhibidores , Propionatos/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Cicatrización de Heridas/fisiología
16.
J Gen Physiol ; 133(6): 603-22, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19468075

RESUMEN

In the intact eye, the transition from light to dark alters pH, [Ca2+], and [K] in the subretinal space (SRS) separating the photoreceptor outer segments and the apical membrane of the retinal pigment epithelium (RPE). In addition to these changes, oxygen consumption in the retina increases with a concomitant release of CO2 and H2O into the SRS. The RPE maintains SRS pH and volume homeostasis by transporting these metabolic byproducts to the choroidal blood supply. In vitro, we mimicked the transition from light to dark by increasing apical bath CO2 from 5 to 13%; this maneuver decreased cell pH from 7.37 +/- 0.05 to 7.14 +/- 0.06 (n = 13). Our analysis of native and cultured fetal human RPE shows that the apical membrane is significantly more permeable (approximately 10-fold; n = 7) to CO2 than the basolateral membrane, perhaps due to its larger exposed surface area. The limited CO2 diffusion at the basolateral membrane promotes carbonic anhydrase-mediated HCO3 transport by a basolateral membrane Na/nHCO3 cotransporter. The activity of this transporter was increased by elevating apical bath CO2 and was reduced by dorzolamide. Increasing apical bath CO2 also increased intracellular Na from 15.7 +/- 3.3 to 24.0 +/- 5.3 mM (n = 6; P < 0.05) by increasing apical membrane Na uptake. The CO2-induced acidification also inhibited the basolateral membrane Cl/HCO3 exchanger and increased net steady-state fluid absorption from 2.8 +/- 1.6 to 6.7 +/- 2.3 microl x cm(-2) x hr(-1) (n = 5; P < 0.05). The present experiments show how the RPE can accommodate the increased retinal production of CO2 and H(2)O in the dark, thus preventing acidosis in the SRS. This homeostatic process would preserve the close anatomical relationship between photoreceptor outer segments and RPE in the dark and light, thus protecting the health of the photoreceptors.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/farmacología , Epitelio Pigmentado de la Retina/metabolismo , Sodio/metabolismo , Transporte Biológico Activo , Anhidrasas Carbónicas/metabolismo , Feto/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico , Iones/metabolismo , Modelos Biológicos , Simportadores de Sodio-Bicarbonato/metabolismo
17.
Invest Ophthalmol Vis Sci ; 50(3): 1454-63, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19060272

RESUMEN

PURPOSE: To determine the localization of JAM-C in human RPE and characterize its functions. METHODS: Immunofluorescence, Western blot, and PCR was used to identify the localization and expression of JAM-C, ZO-1, N-cadherin, and ezrin in cultures of human fetal RPE (hfRPE) with or without si-RNA mediated JAM-C knockdown and in adult native RPE wholemounts. A transepithelial migration assay was used to study the migration of leukocytes through the hfRPE monolayer. RESULTS: JAM-C localized at the tight junctions of cultured hfRPE cells and adult native RPE. During initial junction formation JAM-C was recruited to the primordial cell-cell contacts and after JAM-C knockdown, the organization of N-cadherin and ZO-1 at those contacts was disrupted. JAM-C knockdown caused a delay in the hfRPE cell polarization, as shown by reduced apical staining of ezrin. JAM-C inhibition significantly decreased the chemokine-induced transmigration of granulocytes but not monocytes through the hfRPE monolayer. CONCLUSIONS: JAM-C localizes specifically in the tight junctions of hfRPE and adult native RPE. It is important for tight junction formation in hfRPE, possibly by regulating the recruitment of N-cadherin and ZO-1 at the cell-cell contacts, and has a role in the polarization of hfRPE cells. Finally, JAM-C promotes the basal-to-apical transmigration of granulocytes but not monocytes through the hfRPE monolayer.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Antígenos CD/metabolismo , Western Blotting , Cadherinas/metabolismo , Ensayos de Migración de Leucocitos , Polaridad Celular , Células Cultivadas , Citocinas/farmacología , Proteínas del Citoesqueleto/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Granulocitos/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Monocitos/fisiología , Fosfoproteínas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/farmacología , Epitelio Pigmentado de la Retina/embriología , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1
18.
J Immunol ; 181(7): 5147-57, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18802119

RESUMEN

Noninfectious uveitis is a predominantly T cell-mediated autoimmune, intraocular inflammatory disease. To characterize the gene expression profile from patients with noninfectious uveitis, PBMCs were isolated from 50 patients with clinically characterized noninfectious uveitis syndrome. A pathway-specific cDNA microarray was used for gene expression profiling and real-time PCR array for further confirmation. Sixty-seven inflammation- and autoimmune-associated genes were found differentially expressed in uveitis patients, with 28 of those genes being validated by real-time PCR. Several genes previously unknown for autoimmune uveitis, including IL-22, IL-19, IL-20, and IL-25/IL-17E, were found to be highly expressed among uveitis patients compared with the normal subjects with IL-22 expression highly variable among the patients. Furthermore, we show that IL-22 can affect primary human retinal pigment epithelial cells by decreasing total tissue resistance and inducing apoptosis possibly by decreasing phospho-Bad level. In addition, the microarray data identified a possible uveitis-associated gene expression pattern, showed distinct gene expression profiles in patients during periods of clinical activity and quiescence, and demonstrated similar expression patterns in related patients with similar clinical phenotypes. Our data provide the first evidence that a subset of IL-10 family genes are implicated in noninfectious uveitis and that IL-22 can affect human retinal pigment epithelial cells. The results may facilitate further understanding of the molecular mechanisms of autoimmune uveitis and other autoimmune originated inflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Uveítis/genética , Uveítis/inmunología , Adolescente , Adulto , Anciano , Enfermedades Autoinmunes/metabolismo , Células Cultivadas , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Uveítis/metabolismo , Adulto Joven
19.
Am J Physiol Lung Cell Mol Physiol ; 295(4): L531-42, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18658272

RESUMEN

Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.


Asunto(s)
Bronquios/fisiología , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Flagelina/farmacología , Inmunidad Innata , Mucosa Respiratoria/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/inmunología , Línea Celular , Células Cultivadas , Colforsina/farmacología , Humanos , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Proteínas Recombinantes/farmacología , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología
20.
Invest Ophthalmol Vis Sci ; 49(10): 4620-30, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18450597

RESUMEN

PURPOSE: Proinflammatory cytokines in degenerative diseases can lead to the loss of normal physiology and the destruction of surrounding tissues. In the present study, the physiological responses of human fetal retinal pigment epithelia (hfRPE) were examined in vitro after polarized activation of proinflammatory cytokine receptors. METHODS: Primary cultures of hfRPE were stimulated with an inflammatory cytokine mixture (ICM): interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. Western blot analysis and immunofluorescence were used to determine the expression/localization of the cytokine receptors on hfRPE. Polarized secretion of cytokines was measured. A capacitance probe technique was used to measure transepithelial fluid flow (J(V)) and resistance (R(T)). RESULTS: IL-1R1 was mainly localized to the apical membrane and TNFR1 to the basal membrane, whereas IFN-gammaR1 was detected on both membranes. Activation by apical ICM induced a significant secretion of angiogenic and angiostatic chemokines, mainly across the hfRPE apical membrane. Addition of the ICM to the basal but not the apical bath significantly increased net fluid absorption (J(V)) across the hfRPE within 20 minutes. Similar increases in J(V) were produced by a 24-hour exposure to ICM, which significantly decreased total R(T). CONCLUSIONS: Chemokine gradients across the RPE can be altered (1) through an ICM-induced change in polarized chemokine secretion and (2) through an increase in ICM-induced net fluid absorption. In vivo, both of these factors could contribute to the development of chemokine gradients that help mediate the progression of inflammation/angiogenesis at the retina/RPE/choroid complex.


Asunto(s)
Interferón gamma/farmacología , Interleucina-1beta/farmacología , Epitelio Pigmentado Ocular/efectos de los fármacos , Receptores de Interferón/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Transporte Biológico Activo , Western Blotting , Agua Corporal/metabolismo , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Combinación de Medicamentos , Feto/citología , Humanos , Microscopía Fluorescente , Epitelio Pigmentado Ocular/metabolismo , Receptor de Interferón gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA