Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Leukemia ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965370

RESUMEN

Balanced rearrangements involving the KMT2A gene (KMT2Ar) are recurrent genetic abnormalities in acute myeloid leukemia (AML), but there is lack of consensus regarding the prognostic impact of different fusion partners. Moreover, prognostic implications of gene mutations co-occurring with KMT2Ar are not established. From the HARMONY AML database 205 KMT2Ar adult patients were selected, 185 of whom had mutational information by a panel-based next-generation sequencing analysis. Overall survival (OS) was similar across the different translocations, including t(9;11)(p21.3;q23.3)/KMT2A::MLLT3 (p = 0.756). However, independent prognostic factors for OS in intensively treated patients were age >60 years (HR 2.1, p = 0.001), secondary AML (HR 2.2, p = 0.043), DNMT3A-mut (HR 2.1, p = 0.047) and KRAS-mut (HR 2.0, p = 0.005). In the subset of patients with de novo AML < 60 years, KRAS and TP53 were the prognostically most relevant mutated genes, as patients with a mutation of any of those two genes had a lower complete remission rate (50% vs 86%, p < 0.001) and inferior OS (median 7 vs 30 months, p < 0.001). Allogeneic hematopoietic stem cell transplantation in first complete remission was able to improve OS (p = 0.003). Our study highlights the importance of the mutational patterns in adult KMT2Ar AML and provides new insights into more accurate prognostic stratification of these patients.

2.
Sci Rep ; 14(1): 8797, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627415

RESUMEN

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Asunto(s)
Mieloma Múltiple , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Reparación del ADN , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Factores de Transcripción
3.
Ann Hematol ; 103(1): 73-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917373

RESUMEN

Myeloid malignancies are a group of blood disorders characterized by the proliferation of one or more haematopoietic myeloid cell lineages, predominantly in the bone marrow, and are often caused by aberrant protein tyrosine kinase activity. The protein tyrosine phosphatase CD45 is a trans-membrane molecule expressed on all haemopoietic blood cells except that of platelets and red cells. CD45 regulates various cellular physiological processes including proliferation, apoptosis, and lymphocyte activation. However, its role in chemotherapy response is still unknown; therefore, the aim of this study was to investigate the role of CD45 in myeloid malignancies in terms of cellular growth, apoptosis, and response to chemotherapy. The expression of CD45 on myeloid leukaemia primary cells and cell lines was heterogeneous with HEL and OCI-AML3 cells showing the highest level. Inhibition of CD45 resulted in increased cellular sensitivity to cytarabine and ruxolitinib, the two main therapies for AML and MPN. Bioinformatics analysis identified genes whose expression was correlated with CD45 expression such as JAK2, ACTR2, THAP3 Serglycin, and PBX-1 genes, as well as licensed drugs (alendronate, allopurinol, and balsalazide), which could be repurposed as CD45 inhibitors which effectively increases sensitivity to cytarabine and ruxolitinib at low doses. Therefore, CD45 inhibition could be explored as a potential therapeutic partner for treatment of myeloid malignancies in combination with chemotherapy such as cytarabine especially for elderly patients and those showing chemotherapy resistance.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Mieloide , Trastornos Mieloproliferativos , Humanos , Anciano , Leucemia Mieloide/tratamiento farmacológico , Pirazoles/uso terapéutico , Nitrilos/uso terapéutico , Citarabina , Trastornos Mieloproliferativos/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
4.
Cell Signal ; 114: 111004, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38048856

RESUMEN

Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to Cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome Cytarabine resistance via ROS/p21/CHK1 axis.


Asunto(s)
Curcumina , Leucemia Mieloide Aguda , Animales , Ratones , Humanos , Citarabina/farmacología , Citarabina/uso terapéutico , Especies Reactivas de Oxígeno , Leucemia Mieloide Aguda/genética , Apoptosis , Estrés Oxidativo
5.
Sci Adv ; 9(33): eadg7997, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595034

RESUMEN

Understanding mechanisms of epigenetic regulation in embryonic stem cells (ESCs) is of fundamental importance for stem cell and developmental biology. Here, we identify Spic, a member of the ETS family of transcription factors (TFs), as a marker of ground state pluripotency. We show that Spic is rapidly induced in ground state ESCs and in response to extracellular signal-regulated kinase (ERK) inhibition. We find that SPIC binds to enhancer elements and stabilizes NANOG binding to chromatin, particularly at genes involved in choline/one-carbon (1C) metabolism such as Bhmt, Bhmt2, and Dmgdh. Gain-of-function and loss-of-function experiments revealed that Spic controls 1C metabolism and the flux of S-adenosyl methionine to S-adenosyl-L-homocysteine (SAM-to-SAH), thereby, modulating the levels of H3R17me2 and H3K4me3 histone marks in ESCs. Our findings highlight betaine-dependent 1C metabolism as a hallmark of ground state pluripotency primarily activated by SPIC. These findings underscore the role of uncharacterized auxiliary TFs in linking cellular metabolism to epigenetic regulation in ESCs.


Asunto(s)
Epigénesis Genética , Histonas , Carbono , Células Madre Embrionarias , Metilación , S-Adenosilmetionina
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982791

RESUMEN

Paediatric acute myeloid leukaemia (AML) continues to present treatment challenges, as no "standard approach" exists to treat those young patients reliably and safely. Combination therapies could become a viable treatment option for treating young patients with AML, allowing multiple pathways to be targeted. Our in silico analysis of AML patients highlighted "cell death and survival" as an aberrant, potentially targetable pathway in paediatric AML patients. Therefore, we aimed to identify novel combination therapies to target apoptosis. Our apoptotic drug screening resulted in the identification of one potential "novel" drug pairing, comprising the Bcl-2 inhibitor ABT-737 combined with the CDK inhibitor Purvalanol-A, as well as one triple combination of ABT-737 + AKT inhibitor + SU9516, which showed significant synergism in a series of paediatric AML cell lines. Using a phosphoproteomic approach to understand the apoptotic mechanism involved, proteins related to apoptotic cell death and cell survival were represented, in agreement with further results showing differentially expressed apoptotic proteins and their phosphorylated forms among combination treatments compared to single-agent treated cells such upregulation of BAX and its phosphorylated form (Thr167), dephosphorylation of BAD (Ser 112), and downregulation of MCL-1 and its phosphorylated form (Ser159/Thr 163). Total levels of Bcl-2 were decreased but correlated with increased levels of phosphorylated Bcl-2, which was consistent with our phosphoproteomic analysis predictions. Bcl-2 phosphorylation was regulated by extracellular-signal-regulated kinase (ERK) but not PP2A phosphatase. Although the mechanism linking to Bcl-2 phosphorylation remains to be determined, our findings provide first-hand insights on potential novel combination treatments for AML.


Asunto(s)
Leucemia Mieloide Aguda , Niño , Humanos , Línea Celular Tumoral , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis
7.
Biomolecules ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-36008952

RESUMEN

A Crohn's-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.


Asunto(s)
Neoplasias Colorrectales , Enfermedad de Crohn , Proteínas Portadoras/genética , Enfermedad de Crohn/genética , Biblioteca de Genes , Humanos , Inmunoglobulina G/genética , Proteínas Oncogénicas/genética
8.
Front Oncol ; 12: 909615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837095

RESUMEN

Limited data exists to show the correlation of (tumour protein 53) TP53 mutation detected by Next generation sequencing (NGS) and the presence/absence of deletions of 17p13 detected by FISH. The study which is the largest series to date includes 2332 CLL patients referred for analysis of del(17p) by FISH and TP53 mutations by NGS before treatment. Using a 10% variant allele frequency (VAF) threshold, cases were segregated into high burden mutations (≥10%) and low burden mutations (<10%). TP53 aberrations (17p [del(17p)] and/or TP53 mutation) were detected in 320/2332 patients (13.7%). Using NGS analysis, 429 TP53 mutations were identified in 303 patients (13%). Of these 238 (79%) and 65 (21%) were cases with high burden and low burden mutations respectively. In our cohort, 2012 cases did not demonstrate a TP53 aberration (86.3%). A total of 159 cases showed TP53 mutations in the absence of del(17p) (49/159 with low burden TP53 mutations) and 144 cases had both TP53 mutation and del(17p) (16/144 with low burden mutations). Only 17/2332 (0.7%) cases demonstrated del(17p) with no TP53 mutation. Validated NGS protocols should be used in clinical decision making to avoid missing low-burden TP53 mutations and can detect the vast majority of TP53 aberrations.

9.
PLoS One ; 17(4): e0266412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35436306

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Antivirales/farmacología , Células Epiteliales/metabolismo , Humanos , Interferones/metabolismo , Interferones/farmacología , Quinasas Janus/metabolismo , SARS-CoV-2 , Factores de Transcripción STAT/metabolismo , Transducción de Señal
10.
Viruses ; 14(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35215919

RESUMEN

SARS-CoV-2 can efficiently infect both children and adults, albeit with morbidity and mortality positively associated with increasing host age and presence of co-morbidities. SARS-CoV-2 continues to adapt to the human population, resulting in several variants of concern (VOC) with novel properties, such as Alpha and Delta. However, factors driving SARS-CoV-2 fitness and evolution in paediatric cohorts remain poorly explored. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change in primary airway cell cultures derived from children. Through viral whole-genome sequencing, we explored changes in genetic diversity over time of two pre-VOC clinical isolates of SARS-CoV-2 during passage in paediatric well-differentiated primary nasal epithelial cell (WD-PNEC) cultures and in parallel, in unmodified Vero-derived cell lines. We identified a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near fixation within two passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with paediatric WD-PNECs showing a reduced diversity compared to Vero (E6) cells. However, mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike, while the strain with mutations in Nsp12 (T293I), Spike (P812R) and a truncation of Orf7a remained viable in WD-PNECs. Altogether, our work demonstrates that pre-VOC SARS-CoV-2 efficiently infects paediatric respiratory epithelial cells, and its evolution is restrained compared to Vero (E6) cells, similar to the case of adult cells. We highlight the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and ultimately fitness in human respiratory epithelium.


Asunto(s)
Evolución Molecular , Mucosa Respiratoria/virología , SARS-CoV-2/genética , Animales , Células Cultivadas , Niño , Chlorocebus aethiops , Genotipo , Humanos , Mutación , Nariz/citología , Nariz/virología , Fenotipo , SARS-CoV-2/clasificación , SARS-CoV-2/crecimiento & desarrollo , Células Vero , Secuenciación Completa del Genoma
11.
Cancer Res ; 82(5): 819-830, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35027467

RESUMEN

Mutations in SF3B1 have been identified across several cancer types. This key spliceosome component promotes the efficient mRNA splicing of thousands of genes including those with crucial roles in the cellular response to DNA damage. Here, we demonstrate that depletion of SF3B1 specifically compromises homologous recombination (HR) and is epistatic with loss of BRCA1. More importantly, the most prevalent cancer-associated mutation in SF3B1, K700E, also affects HR efficiency and as a consequence, increases the cellular sensitivity to ionizing radiation and a variety of chemotherapeutic agents, including PARP inhibitors. In addition, the SF3B1 K700E mutation induced unscheduled R-loop formation, replication fork stalling, increased fork degradation, and defective replication fork restart. Taken together, these data suggest that tumor-associated mutations in SF3B1 induce a BRCA-like cellular phenotype that confers synthetic lethality to DNA-damaging agents and PARP inhibitors, which can be exploited therapeutically. SIGNIFICANCE: The cancer-associated SF3B1K700E mutation induces DNA damage via generation of genotoxic R-loops and stalled replication forks, defective homologous recombination, and increased replication fork degradation, which can be targeted with PARP inhibitors.


Asunto(s)
Neoplasias , Fosfoproteínas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Factores de Empalme de ARN , Replicación del ADN , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fenotipo , Fosfoproteínas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Factores de Empalme de ARN/genética , Mutaciones Letales Sintéticas
12.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638823

RESUMEN

Despite recent advances in therapies including immunotherapy, patients with acute myeloid leukaemia (AML) still experience relatively poor survival rates. The Inhibition of Apoptosis (IAP) family member, survivin, also known by its gene and protein name, Baculoviral IAP Repeat Containing 5 (BIRC5), remains one of the most frequently expressed antigens across AML subtypes. To better understand its potential to act as a target for immunotherapy and a biomarker for AML survival, we examined the protein and pathways that BIRC5 interacts with using the Kyoto Encyclopedia of Genes and Genomes (KEGG), search tool for recurring instances of neighbouring genes (STRING), WEB-based Gene Set Analysis Toolkit, Bloodspot and performed a comprehensive literature review. We then analysed data from gene expression studies. These included 312 AML samples in the Microarray Innovations In Leukemia (MILE) dataset. We found a trend between above median levels of BIRC5 being associated with improved overall survival (OS) but this did not reach statistical significance (p = 0.077, Log-Rank). There was some evidence of a beneficial effect in adjusted analyses where above median levels of BIRC5 were shown to be associated with improved OS (p = 0.001) including in Core Binding Factor (CBF) patients (p = 0.03). Above median levels of BIRC5 transcript were associated with improved relapse free survival (p < 0.0001). Utilisation of a second large cDNA microarray dataset including 306 AML cases, again showed no correlation between BIRC5 levels and OS, but high expression levels of BIRC5 correlated with worse survival in inv(16) patients (p = 0.077) which was highly significant when datasets A and B were combined (p = 0.001). In addition, decreased BIRC5 expression was associated with better clinical outcome (p = 0.004) in AML patients exhibiting CBF mainly due to patients with inv(16) (p = 0.007). This study has shown that BIRC5 expression plays a role in the survival of AML patients, this association is not apparent when we examine CBF patients as a cohort, but when those with inv(16) independently indicating that those patients with inv(16) would provide interesting candidates for immunotherapies that target BIRC5.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Proteínas de Neoplasias/biosíntesis , Survivin/biosíntesis , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Tasa de Supervivencia , Survivin/genética
13.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34576326

RESUMEN

Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the malignant transformation of myeloid precursor cells with impaired differentiation. Standard therapy for paediatric AML has remained largely unchanged for over four decades and, combined with inadequate understanding of the biology of paediatric AML, has limited the progress of targeted therapies in this cohort. In recent years, the search for novel targets for the treatment of paediatric AML has accelerated in parallel with advanced genomic technologies which explore the mutational and transcriptional landscape of this disease. Exploiting the large combinatorial space of existing drugs provides an untapped resource for the identification of potential combination therapies for the treatment of paediatric AML. We have previously designed a multiplex screening strategy known as Multiplex Screening for Interacting Compounds in AML (MuSICAL); using an algorithm designed in-house, we screened all pairings of 384 FDA-approved compounds in less than 4000 wells by pooling drugs into 10 compounds per well. This approach maximised the probability of identifying new compound combinations with therapeutic potential while minimising cost, replication and redundancy. This screening strategy identified the triple combination of glimepiride, a sulfonylurea; pancuronium dibromide, a neuromuscular blocking agent; and vinblastine sulfate, a vinca alkaloid, as a potential therapy for paediatric AML. We envision that this approach can be used for a variety of disease-relevant screens allowing the efficient repurposing of drugs that can be rapidly moved into the clinic.


Asunto(s)
Supervivencia Celular/fisiología , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/uso terapéutico , Western Blotting , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Reposicionamiento de Medicamentos , Citometría de Flujo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación/genética
14.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576201

RESUMEN

The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Proteínas Nucleares/genética , Tirosina Quinasa 3 Similar a fms/genética , ADN Metiltransferasa 3A , Humanos , Nucleofosmina
15.
J Hematol Oncol ; 14(1): 103, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193229

RESUMEN

The Philadelphia negative myeloproliferative neoplasms (MPN) compromise a heterogeneous group of clonal myeloid stem cell disorders comprising polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Despite distinct clinical entities, these disorders are linked by morphological similarities and propensity to thrombotic complications and leukaemic transformation. Current therapeutic options are limited in disease-modifying activity with a focus on the prevention of thrombus formation. Constitutive activation of the JAK/STAT signalling pathway is a hallmark of pathogenesis across the disease spectrum with driving mutations in JAK2, CALR and MPL identified in the majority of patients. Co-occurring somatic mutations in genes associated with epigenetic regulation, transcriptional control and splicing of RNA are variably but recurrently identified across the MPN disease spectrum, whilst epigenetic contributors to disease are increasingly recognised. The prognostic implications of one MPN diagnosis may significantly limit life expectancy, whilst another may have limited impact depending on the disease phenotype, genotype and other external factors. The genetic and clinical similarities and differences in these disorders have provided a unique opportunity to understand the relative contributions to MPN, myeloid and cancer biology generally from specific genetic and epigenetic changes. This review provides a comprehensive overview of the molecular pathophysiology of MPN exploring the role of driver mutations, co-occurring mutations, dysregulation of intrinsic cell signalling, epigenetic regulation and genetic predisposing factors highlighting important areas for future consideration.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Trastornos Mieloproliferativos/genética , Animales , Epigénesis Genética , Predisposición Genética a la Enfermedad , Humanos , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/fisiopatología
16.
Int J Mol Sci ; 22(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065087

RESUMEN

Myeloid malignancy is a broad term encapsulating myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Initial studies into genomic profiles of these diseases have shown 2000 somatic mutations prevalent across the spectrum of myeloid blood disorders. Epigenetic mutations are emerging as critical components of disease progression, with mutations in genes controlling chromatin regulation and methylation/acetylation status. Genes such as DNA methyltransferase 3A (DNMT3A), ten eleven translocation methylcytosine dioxygenase 2 (TET2), additional sex combs-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and isocitrate dehydrogenase 1/2 (IDH1/2) show functional impact in disease pathogenesis. In this review we discuss how current knowledge relating to disease progression, mutational profile and therapeutic potential is progressing and increasing understanding of myeloid malignancies.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Animales , Biomarcadores , Metilación de ADN , ADN Metiltransferasa 3A , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Epigenómica/métodos , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Terapia Molecular Dirigida , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Trastornos Mieloproliferativos/terapia
17.
J Clin Pathol ; 74(9): 548-552, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34039664

RESUMEN

The leucocyte common antigen, protein tyrosine phosphatase receptor type C (PTPRC), also known as CD45, is a transmembrane glycoprotein, expressed on almost all haematopoietic cells except for mature erythrocytes, and is an essential regulator of T and B cell antigen receptor-mediated activation. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity (from CD45 and others) can result in immunodeficiency, autoimmunity, or malignancy. CD45 is normally present on the cell surface, therefore it works upstream of a large signalling network which differs between cell types, and thus the effects of CD45 on these cells are also different. However, it is becoming clear that CD45 plays an essential role in the innate immune system and this is likely to be a key area for future research. In this review of PTPRC (CD45), its structure and biological activities as well as abnormal expression of CD45 in leukaemia and lymphoma will be discussed.


Asunto(s)
Antígenos Comunes de Leucocito , Humanos
19.
Blood Adv ; 5(4): 1059-1068, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33599741

RESUMEN

Approximately 10% to 15% of patients with essential thrombocythemia (ET) lack the common driver mutations, so-called "triple-negative" (TN) disease. We undertook a systematic approach to investigate for somatic mutations and delineate gene expression signatures in 46 TN patients and compared the results to those with known driver mutations and healthy volunteers. Deep, error-corrected, next-generation sequencing of peripheral blood mononuclear cells using the HaloPlexHS platform and whole-exome sequencing was performed. Using this platform, 10 (22%) of 46 patients had detectable mutations (MPL, n = 6; JAK2V617F, n = 4) with 3 of 10 cases harboring germline MPL mutations. RNA-sequencing and DNA methylation analysis were also performed by using peripheral blood mononuclear cells. Pathway analysis comparing healthy volunteers and ET patients (regardless of mutational status) identified significant enrichment for genes in the tumor necrosis factor, NFκB, and MAPK pathways and upregulation of platelet proliferative drivers such as ITGA2B and ITGB3. Correlation with DNA methylation showed a consistent pattern of hypomethylation at upregulated gene promoters. Interrogation of these promoter regions highlighted enrichment of transcriptional regulators, which were significantly upregulated in patients with ET regardless of mutation status, including CEBPß and NFκB. For "true" TN ET, patterns of gene expression and DNA methylation were similar to those in ET patients with known driver mutations. These observations suggest that the resultant ET phenotype may, at least in part and regardless of mutation type, be driven by transcriptional misregulation and may propagate downstream via the MAPK, tumor necrosis factor, and NFκB pathways with resultant JAK-STAT activation. These findings identify potential novel mechanisms of disease initiation that require further evaluation.


Asunto(s)
Trombocitemia Esencial , Calreticulina/genética , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucocitos Mononucleares/metabolismo , Receptores de Trombopoyetina , Trombocitemia Esencial/genética , Transcriptoma
20.
Stem Cells Transl Med ; 10(6): 836-843, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33475252

RESUMEN

Bone homeostasis and hematopoiesis are irrevocably linked in the hypoxic environment of the bone marrow. Erythropoietin (Epo) regulates erythropoiesis by binding to its receptor, Epor, on erythroid progenitor cells. The continuous process of bone remodeling is achieved by the finely balanced activity of osteoblasts in bone synthesis and osteoclasts in bone resorption. Both osteoblasts and osteoclasts express functional Epors, but the underlying mechanism of Epo-Epor signaling in bone homeostasis is incompletely understood. Two recent publications have provided new insights into the contribution of endogenous Epo to bone homeostasis. Suresh et al examined Epo-Epor signaling in osteoblasts in bone formation in mice and Deshet-Unger et al investigated osteoclastogenesis arising from transdifferentiation of B cells. Both groups also studied bone loss in mice caused by exogenous human recombinant EPO-stimulated erythropoiesis. They found that either deletion of Epor in osteoblasts or conditional knockdown of Epor in B cells attenuates EPO-driven bone loss. These findings have direct clinical implications because patients on long-term treatment for anemia may have an increased risk of bone fractures. Phase 3 trials of small molecule inhibitors of the PHD enzymes (hypoxia inducible factor-prolyl hydroxylase inhibitors [HIF-PHIs]), such as Roxadustat, have shown improved iron metabolism and increased circulating Epo levels in a titratable manner, avoiding the supraphysiologic increases that often accompany intravenous EPO therapy. The new evidence presented by Suresh and Deshet-Unger and their colleagues on the effects of EPO-stimulated erythropoiesis on bone homeostasis seems likely to stimulate discussion on the relative merits and safety of EPO and HIF-PHIs.


Asunto(s)
Anemia , Remodelación Ósea , Eritropoyetina , Anemia/tratamiento farmacológico , Animales , Eritropoyesis , Homeostasis , Humanos , Ratones , Osteoblastos , Osteoclastos , Receptores de Eritropoyetina , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...