Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38198573

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Argininosuccinic Aciduria , Liver Diseases , Adult , Humans , Animals , Mice , Argininosuccinic Aciduria/genetics , Argininosuccinic Aciduria/therapy , Cysteine , Glutathione , Metabolomics
2.
J Inherit Metab Dis ; 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38044746

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.

3.
Dev Med Child Neurol ; 64(12): 1539-1546, 2022 12.
Article En | MEDLINE | ID: mdl-35833379

AIM: Using Niemann-Pick type C disease (NPC) as a paradigm, we aimed to improve biomarker discovery in patients with neurometabolic disorders. METHOD: Using a multiplexed liquid chromatography tandem mass spectrometry dried bloodspot assay, we developed a selective intelligent biomarker panel to monitor known biomarkers N-palmitoyl-O-phosphocholineserine and 3ß,5α,6ß-trihydroxy-cholanoyl-glycine as well as compounds predicted to be affected in NPC pathology. We applied this panel to a clinically relevant paediatric patient cohort (n = 75; 35 males, 40 females; mean age 7 years 6 months, range 4 days-19 years 8 months) presenting with neurodevelopmental and/or neurodegenerative pathology, similar to that observed in NPC. RESULTS: The panel had a far superior performance compared with individual biomarkers. Namely, NPC-related established biomarkers used individually had 91% to 97% specificity but the combined panel had 100% specificity. Moreover, multivariate analysis revealed long-chain isoforms of glucosylceramide were elevated and very specific for patients with NPC. INTERPRETATION: Despite advancements in next-generation sequencing and precision medicine, neurological non-enzymatic disorders remain difficult to diagnose and lack robust biomarkers or routine functional testing for genetic variants of unknown significance. Biomarker panels may have better diagnostic accuracy than individual biomarkers in neurometabolic disorders, hence they can facilitate more prompt disease identification and implementation of emerging targeted, disease-specific therapies. WHAT THIS PAPER ADDS: Intelligent biomarker panel design can help expedite diagnosis in neurometabolic disorders. In Niemann-Pick type C disease, such a panel performed better than individual biomarkers. Biomarker panels are easy to implement and widely applicable to neurometabolic conditions.


Niemann-Pick Disease, Type C , Male , Female , Child , Humans , Infant, Newborn , Niemann-Pick Disease, Type C/diagnosis , Biomarkers
4.
EMBO Mol Med ; 13(2): e13158, 2021 02 05.
Article En | MEDLINE | ID: mdl-33369168

Urea cycle disorders (UCD) are inherited defects in clearance of waste nitrogen with high morbidity and mortality. Novel and more effective therapies for UCD are needed. Studies in mice with constitutive activation of autophagy unravelled Beclin-1 as druggable candidate for therapy of hyperammonemia. Next, we investigated efficacy of cell-penetrating autophagy-inducing Tat-Beclin-1 (TB-1) peptide for therapy of the two most common UCD, namely ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL) deficiencies. TB-1 reduced urinary orotic acid and improved survival under protein-rich diet in spf-ash mice, a model of OTC deficiency (proximal UCD). In AslNeo/Neo mice, a model of ASL deficiency (distal UCD), TB-1 increased ureagenesis, reduced argininosuccinate, and improved survival. Moreover, it alleviated hepatocellular injury and decreased both cytoplasmic and nuclear glycogen accumulation in AslNeo/Neo mice. In conclusion, Beclin-1-dependent activation of autophagy improved biochemical and clinical phenotypes of proximal and distal defects of the urea cycle.


Argininosuccinic Aciduria , Ornithine Carbamoyltransferase Deficiency Disease , Urea Cycle Disorders, Inborn , Animals , Autophagy , Beclin-1/genetics , Mice
5.
F1000Res ; 10: 614, 2021.
Article En | MEDLINE | ID: mdl-35106137

Classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) is caused by a deficiency of tripeptidyl-peptidase-1. In 2017, the first CLN2 enzyme replacement therapy (ERT) cerliponase alfa (Brineura) was approved by the FDA and EMA. The CLN2 disease clinical rating scale (CLN2 CRS) was developed to monitor loss of motor function, language and vision as well as frequency of generalised tonic clonic seizures. Using CLN2 CRS in an open label clinical trial it was shown that Brineura slowed down the progression of CLN2 symptoms. Neurofilament light chain (NfL) is a protein highly expressed in myelinated axons. An increase of cerebrospinal fluid (CSF) and blood NfL is found in a variety of neuroinflammatory, neurodegenerative, traumatic, and cerebrovascular diseases. We analysed CSF NfL in CLN2 patients treated with Brineura to establish whether it can be used as a possible biomarker of response to therapy. Newly diagnosed patients had CSF samples collected and analysed at first treatment dose and up to 12 weeks post-treatment to look at acute changes. Patients on a compassionate use programme who were already receiving ERT for approximately 1yr had CSF samples collected and NfL analysed over the following 1.3 years (2.3 years post-initiation of ERT) to look at long-term changes. All newly diagnosed patients we investigated with classical late infantile phenotype had high NfL levels >2000 pg/ml at start of treatment. No significant change was observed in NfL up to 12 weeks post-treatment. After one year of ERT, two out of six patients still had high NfL levels, but all patients showed a continued decrease, and all had low NfL levels after two years on ERT. NfL levels appear to correspond and predict improved clinical status of patients on ERT and could be useful as a biomarker to monitor neurodegeneration and verify disease modification in CLN2 patients on ERT.


Enzyme Replacement Therapy , Neuronal Ceroid-Lipofuscinoses , Biomarkers , Humans , Intermediate Filaments , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/genetics , Tripeptidyl-Peptidase 1
6.
Neuromuscul Disord ; 30(7): 583-589, 2020 07.
Article En | MEDLINE | ID: mdl-32522499

PDXK encodes for a pyridoxal kinase, which converts inactive B6 vitamers to the active cofactor pyridoxal 5'-phosphate (PLP). Recently, biallelic pathogenic variants in PDXK were shown to cause axonal Charcot-Marie-Tooth disease with optic atrophy that responds to PLP supplementation. We present two affected siblings carrying a novel biallelic missense PDXK variant with a similar phenotype with earlier onset. After detection of a novel PDXK variant using Whole Exome Sequencing, we confirmed pathogenicity through in silico protein structure analysis, determination of pyridoxal kinase activity using liquid chromatography-tandem mass spectrometry, and measurement of plasma PLP concentrations using high performance liquid chromatography. Our in silico analysis shows a potential effect on PDXK dimer stability, as well as a putative effect on posttranslational ubiquitination that is predicted to lead to increased protein degradation. We demonstrate that the variant leads to almost complete loss of PDXK enzymatic activity and low PLP levels. Our patients' early diagnosis and prompt PLP replacement restored the PLP plasma levels, enabling long-term monitoring of clinical outcomes. We recommend that patients presenting with similar phenotype should be screened for PDXK mutations, as this is a rare opportunity for treatment.


Optic Atrophy/drug therapy , Phosphotransferases (Alcohol Group Acceptor)/genetics , Polyneuropathies/drug therapy , Pyridoxal Phosphate/therapeutic use , Vitamin B 6/metabolism , Adolescent , Female , Humans , Male , Mutation , Pyridoxal Kinase/metabolism
7.
Ann Neurol ; 86(2): 225-240, 2019 08.
Article En | MEDLINE | ID: mdl-31187503

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240.


Mutation/genetics , Polyneuropathies/drug therapy , Polyneuropathies/genetics , Pyridoxal Kinase/genetics , Pyridoxal Phosphate/administration & dosage , Vitamin B Complex/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Dietary Supplements , Female , Gene Regulatory Networks/genetics , Humans , Male , Treatment Outcome
8.
J Inherit Metab Dis ; 42(4): 629-646, 2019 07.
Article En | MEDLINE | ID: mdl-30671974

Vitamin B6 is present in our diet in many forms, however, only pyridoxal 5'-phosphate (PLP) can function as a cofactor for enzymes. The intestine absorbs nonphosphorylated B6 vitamers, which are converted by specific enzymes to the active PLP form. The role of PLP is enabled by its reactive aldehyde group. Pathways reliant on PLP include amino acid and neurotransmitter metabolism, folate and 1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism, mitochondrial function and erythropoiesis. Besides the role of PLP as a cofactor B6 vitamers also play other cellular roles, for example, as antioxidants, modifying expression and action of steroid hormone receptors, affecting immune function, as chaperones and as an antagonist of Adenosine-5'-triphosphate (ATP) at P2 purinoceptors. Because of the vital role of PLP in neurotransmitter metabolism, particularly synthesis of the inhibitory transmitter γ-aminobutyric acid, it is not surprising that various inborn errors leading to PLP deficiency manifest as B6 -responsive epilepsy, usually of early onset. This includes pyridox(am)ine phosphate oxidase deficiency (a disorder affecting PLP synthesis and recycling), disorders affecting PLP import into the brain (hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects), a disorder of an intracellular PLP-binding protein (PLPBP, previously named PROSC) and disorders where metabolites accumulate that inactivate PLP, for example, ALDH7A1 deficiency and hyperprolinaemia type II. Patients with these disorders can show rapid control of seizures in response to either pyridoxine and/or PLP with a lifelong dependency on supraphysiological vitamin B6 supply. The clinical and biochemical features of disorders leading to B6 -responsive seizures and the treatment of these disorders are described in this review.


Epilepsy/etiology , Vitamin B 6 Deficiency/complications , Vitamin B 6/metabolism , Epilepsy/drug therapy , Epilepsy/metabolism , Humans , Metabolism, Inborn Errors/metabolism , Proline/blood , Pyridoxal Phosphate/therapeutic use , Pyridoxaminephosphate Oxidase/deficiency , Pyridoxine/therapeutic use
9.
Nat Commun ; 9(1): 3505, 2018 08 29.
Article En | MEDLINE | ID: mdl-30158522

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Argininosuccinate Lyase/metabolism , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/therapy , Animals , Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/genetics , Brain Diseases/genetics , Brain Diseases/metabolism , Brain Diseases/therapy , Citrulline/metabolism , Genetic Therapy , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/therapy , Liver/cytology , Mice , Neurons/metabolism , Nitric Oxide/metabolism , Nitrosative Stress/genetics , Nitrosative Stress/physiology
10.
Article En | LILACS-Express | LILACS | ID: biblio-1090950

Abstract Many micronutrients or cofactors derived from micronutrients are highly reactive, hence their role in catalysis of reactions by enzymes. The concentration of cofactors has to be kept low to avoid unwanted reactions while allowing them to bind to the (apo)enzymes that need them. A new disorder causing B6-responsive epilepsy (proline synthetase cotranscribed bacterial homologue deficiency) is probably due to the absence of an important intracellular pyridoxal phosphate chaperone. The availability of some micronutrients varies by orders of magnitude in different geographical areas. Selenium is both essential and toxic, and during evolution, different populations have had to adapt to this differing availability. An "inborn error of metabolism (IEM)" in a low selenium area of China may be a selective advantage in a high selenium area and vice versa; the concept of nutrigenomics is an important one for micronutrients. The gut flora may make an important contribution to vitamin synthesis. This is difficult to study, but experiments can be undertaken with the nematode, Caenorhabditis elegans (with or without an IEM) and a single clone of Escherichia coli (with or without an IEM) as food and gut flora. This model shows that the gut microbiome can have profound influences on the folate cycle and associated vitamins. Our innate immune system makes use of the micronutrient requirements of pathogens and can deprive a pathogen of essential micronutrient(s) or expose it to toxic levels. It is not surprising, therefore, that some mutations affecting the way the host handles micronutrients can confer an advantage in resistance to infection and this may have acted as a selective advantage during evolution. This will be discussed by reference to the relationship of inborn errors to resistance to malaria. Conversely, other inborn errors of micronutrient metabolism are likely to make it more difficult for the host to use nutritional immunity to fight infection; this probably accounts for the list of infections that are more serious in patients with hereditary haemochromatosis.

11.
Anal Chem ; 89(17): 8892-8900, 2017 09 05.
Article En | MEDLINE | ID: mdl-28782931

We report the development of a rapid, simple, and robust LC-MS/MS-based enzyme assay using dried blood spots (DBS) for the diagnosis of pyridox(am)ine 5'-phosphate oxidase (PNPO) deficiency (OMIM 610090). PNPO deficiency leads to potentially fatal early infantile epileptic encephalopathy, severe developmental delay, and other features of neurological dysfunction. However, upon prompt treatment with high doses of vitamin B6, affected patients can have a normal developmental outcome. Prognosis of these patients is therefore reliant upon a rapid diagnosis. PNPO activity was quantified by measuring pyridoxal 5'-phosphate (PLP) concentrations in a DBS before and after a 30 min incubation with pyridoxine 5'-phosphate (PNP). Samples from 18 PNPO deficient patients (1 day-25 years), 13 children with other seizure disorders receiving B6 supplementation (1 month-16 years), and 37 child hospital controls (5 days-15 years) were analyzed. DBS from the PNPO-deficient samples showed enzyme activity levels lower than all samples from these two other groups as well as seven adult controls; no false positives or negatives were identified. The method was fully validated and is suitable for translation into the clinical diagnostic arena.


Chromatography, High Pressure Liquid/methods , Epilepsy/diagnosis , Pyridoxaminephosphate Oxidase/metabolism , Tandem Mass Spectrometry/methods , Adolescent , Adult , Area Under Curve , Case-Control Studies , Child , Child, Preschool , Dried Blood Spot Testing , Epilepsy/drug therapy , Humans , Infant , Infant, Newborn , Male , Pyridoxal Phosphate/blood , Pyridoxamine/analogs & derivatives , Pyridoxamine/blood , ROC Curve , Vitamin B 6/chemistry , Vitamin B 6/metabolism , Vitamin B 6/therapeutic use , Young Adult
12.
Cell ; 169(3): 442-456.e18, 2017 04 20.
Article En | MEDLINE | ID: mdl-28431245

Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.


Antineoplastic Agents/metabolism , Escherichia coli/metabolism , Fluorouracil/metabolism , Gastrointestinal Microbiome , Animals , Autophagy , Caenorhabditis elegans , Cell Death , Colorectal Neoplasms/drug therapy , Diet , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , Models, Animal , Pentosyltransferases/genetics
13.
J Inherit Metab Dis ; 40(3): 357-368, 2017 05.
Article En | MEDLINE | ID: mdl-28251416

OBJECTIVES: This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS: Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS: Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS: Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration.


Argininosuccinic Aciduria/pathology , Argininosuccinic Aciduria/therapy , Adolescent , Adult , Ammonia/metabolism , Argininosuccinic Acid/blood , Argininosuccinic Aciduria/blood , Argininosuccinic Aciduria/genetics , Child , Child, Preschool , Female , Follow-Up Studies , Genotype , Humans , Hyperammonemia/metabolism , Hyperammonemia/pathology , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Phenotype , Prospective Studies , Retrospective Studies , Young Adult
14.
J Inherit Metab Dis ; 40(3): 385-394, 2017 05.
Article En | MEDLINE | ID: mdl-28255779

Mutations in SLC25A22 are known to cause neonatal epileptic encephalopathy and migrating partial seizures in infancy. Using whole exome sequencing we identified four novel SLC25A22 mutations in six children from three families. Five patients presented clinical features similar to those in the literature including hypotonia, refractory neonatal-onset seizures and developmental delay. However, the sixth patients presented atypically with isolated developmental delay, developing late-onset (absence) seizures only at 7 years of age. Abnormal metabolite levels have not been documented in the nine patients described previously. One patient in our series was referred to the metabolic clinic because of persistent hyperprolinaemia and another three had raised plasma proline when tested. Analysis of the post-prandial plasma amino acid response in one patient showed abnormally high concentrations of several amino acids. This suggested that, in the fed state, when amino acids are the preferred fuel for the liver, trans-deamination of amino acids requires transportation of glutamate into liver mitochondria by SLC25A22 for deamination by glutamate dehydrogenase; SLC25A22 is an important mitochondrial glutamate transporter in liver as well as in brain. Electron microscopy of patient fibroblasts demonstrated widespread vacuolation containing neutral and phospho-lipids as demonstrated by Oil Red O and Sudan Black tinctorial staining; this might be explained by impaired activity of the proline/pyrroline-5-carboxylate (P5C) shuttle if SLC25A22 transports pyrroline-5-carboxylate/glutamate-γ-semialdehyde as well as glutamate.


Amino Acid Metabolism, Inborn Errors/genetics , Developmental Disabilities/genetics , Fibroblasts/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mutation/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Child , Child, Preschool , Female , Glutamic Acid/metabolism , Humans , Infant , Infant, Newborn , Male , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Proline/metabolism , Seizures/genetics , Seizures/metabolism
15.
J Pharm Pharmacol ; 69(4): 480-488, 2017 Apr.
Article En | MEDLINE | ID: mdl-28220480

OBJECTIVES: To assess the pyridoxal 5'-phosphate (PLP) content and stability of extemporaneous PLP liquids prepared from dietary supplements used for the treatment of vitamin B6 -dependent epilepsy. METHODS: Pyridoxal 5'-phosphate liquids were prepared in accordance with the guidelines given to patients from marketed 50 mg PLP dietary capsules and tablets. The PLP content and its stability were evaluated under conditions resembling the clinical setting using reverse phase HPLC and mass spectrometry. KEY FINDINGS: Pyridoxal 5'-phosphate content in most of the extemporaneously prepared liquids from dietary supplements was found to be different from the expected amount (~16-60 mg). Most of these PLP extemporaneous liquids were stable at room temperature (protected from light) after 24 h but unstable after 4 h when exposed to light. A key photodegradation product of PLP in water was confirmed as 4-pyridoxic acid 5'-phosphate (PAP). CONCLUSION: Pyridoxal 5'-phosphate tablets from Solgar® were found to be the most reliable product for the preparation of extemporaneous PLP liquids. This work highlighted the difference between the marketed PLP dietary supplements quality and the importance of proper storage of aqueous PLP. There is a need to develop pharmaceutical forms of PLP that ensure dose accuracy and avoid potentially unsafe impurities with the aim of enhancing safety and compliance.


Epilepsy , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/standards , Quality Control , Vitamin B Complex/chemistry , Vitamin B Complex/standards , Dietary Supplements/standards , Dosage Forms , Drug Stability , Drug Storage/standards , Epilepsy/drug therapy , Pharmaceutical Solutions , Photolysis , Pyridoxal Phosphate/therapeutic use , Vitamin B Complex/therapeutic use
16.
J Inherit Metab Dis ; 40(3): 423-431, 2017 05.
Article En | MEDLINE | ID: mdl-28205048

BACKGROUND: Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. METHODS AND RESULTS: We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. CONCLUSIONS: We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias.


Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Orotate Phosphoribosyltransferase/deficiency , Orotidine-5'-Phosphate Decarboxylase/deficiency , Purine-Pyrimidine Metabolism, Inborn Errors/metabolism , Anemia, Megaloblastic/genetics , Anemia, Megaloblastic/metabolism , Child , Child, Preschool , Female , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Intellectual Disability/metabolism , Male , Mutation/genetics , Orotate Phosphoribosyltransferase/genetics , Orotate Phosphoribosyltransferase/metabolism , Orotic Acid/metabolism , Orotidine-5'-Phosphate Decarboxylase/genetics , Orotidine-5'-Phosphate Decarboxylase/metabolism , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Pyrimidines/metabolism , Urea Cycle Disorders, Inborn/genetics , Urea Cycle Disorders, Inborn/metabolism , Uridine/metabolism
17.
Am J Hum Genet ; 99(6): 1325-1337, 2016 Dec 01.
Article En | MEDLINE | ID: mdl-27912044

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Epilepsy/genetics , Epilepsy/metabolism , Homeostasis/genetics , Mutation , Proteins/genetics , Pyridoxal Phosphate/metabolism , Vitamin B 6/metabolism , Adolescent , Carnosine/analogs & derivatives , Carnosine/metabolism , Cells, Cultured , Child , Child, Preschool , Exome/genetics , Female , Fibroblasts , Homozygote , Humans , Infant , Male , Pedigree , Proline/metabolism , Vitamin B 6/blood
18.
Brain ; 139(11): 2844-2854, 2016 11 01.
Article En | MEDLINE | ID: mdl-27604308

Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts.


Brain Diseases, Metabolic/genetics , Genetic Predisposition to Disease , Metabolism, Inborn Errors/genetics , Adolescent , Brain Diseases, Metabolic/diagnostic imaging , Child , Child, Preschool , Cohort Studies , Female , Genetic Testing , Genotype , Humans , Imaging, Three-Dimensional , Infant , Magnetic Resonance Imaging , Male , Metabolism, Inborn Errors/diagnostic imaging , Phenotype , Tripeptidyl-Peptidase 1 , Young Adult
20.
Orphanet J Rare Dis ; 11(1): 90, 2016 07 02.
Article En | MEDLINE | ID: mdl-27370603

BACKGROUND: TRNT1 (CCA-adding transfer RNA nucleotidyl transferase) enzyme deficiency is a new metabolic disease caused by defective post-transcriptional modification of mitochondrial and cytosolic transfer RNAs (tRNAs). RESULTS: We investigated four patients from two families with infantile-onset cyclical, aseptic febrile episodes with vomiting and diarrhoea, global electrolyte imbalance during these episodes, sideroblastic anaemia, B lymphocyte immunodeficiency, retinitis pigmentosa, hepatosplenomegaly, exocrine pancreatic insufficiency and renal tubulopathy. Other clinical features found in children include sensorineural deafness, cerebellar atrophy, brittle hair, partial villous atrophy and nephrocalcinosis. Whole exome sequencing and bioinformatic filtering were utilised to identify recessive compound heterozygous TRNT1 mutations (missense mutation c.668T>C, p.Ile223Thr and a novel splice mutation c.342+5G>T) segregating with disease in the first family. The second family was found to have a homozygous TRNT1 mutation (c.569G>T), p.Arg190Ile, (previously published). We found normal mitochondrial translation products using passage matched controls and functional perturbation of 3' CCA addition to mitochondrial tRNAs (tRNA(Cys), tRNA(LeuUUR) and tRNA(His)) in fibroblasts from two patients, demonstrating a pathomechanism affecting the CCA addition to mt-tRNAs. Acute management of these patients included transfusion for anaemia, fluid and electrolyte replacement and immunoglobulin therapy. We also describe three-year follow-up findings after treatment by bone marrow transplantation in one patient, with resolution of fever and reversal of the abnormal metabolic profile. CONCLUSIONS: Our report highlights that TRNT1 mutations cause a spectrum of disease ranging from a childhood-onset complex disease with manifestations in most organs to an adult-onset isolated retinitis pigmentosa presentation. Systematic review of all TRNT1 cases and mutations reported to date revealed a distinctive phenotypic spectrum and metabolic and other investigative findings, which will facilitate rapid clinical recognition of future cases.


Mitochondrial Diseases/genetics , Nucleotidyltransferases/deficiency , Anemia, Sideroblastic/genetics , Developmental Disabilities/genetics , Humans , Mutation/genetics , Nucleotidyltransferases/genetics , Protein Biosynthesis/genetics , RNA, Transfer/genetics
...