Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Biobehav Rev ; 127: 424-445, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33971223

RESUMEN

Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.


Asunto(s)
Trastorno Bipolar , Enfermedades Neurodegenerativas , Biomarcadores , Trastorno Bipolar/tratamiento farmacológico , Humanos , Litio/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Procesamiento Proteico-Postraduccional
2.
Neurobiol Dis ; 78: 172-95, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25836420

RESUMEN

Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson's disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock-in (KI) mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6months, by 12months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug-evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S KI mice, which are consistent with mitochondrial fission arrest. We anticipate that this G2019S mouse line will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression.


Asunto(s)
Encéfalo/enzimología , Dopamina/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/ultraestructura , Neuronas Dopaminérgicas/metabolismo , Femenino , Técnicas de Sustitución del Gen , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/ultraestructura , Actividad Motora/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Proteínas tau/metabolismo
3.
Hum Mol Genet ; 24(6): 1691-703, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25416282

RESUMEN

Vacuolar protein sorting 35 (VPS35) is a core component of the retromer complex, crucial to endosomal protein sorting and intracellular trafficking. We recently linked a mutation in VPS35 (p.D620N) to familial parkinsonism. Here, we characterize human VPS35 and retromer function in mature murine neuronal cultures and investigate neuron-specific consequences of the p.D620N mutation. We find VPS35 localizes to dendritic spines and is involved in the trafficking of excitatory AMPA-type glutamate receptors (AMPARs). Fundamental neuronal processes, including excitatory synaptic transmission, AMPAR surface expression and synaptic recycling are altered by VPS35 overexpression. VPS35 p.D620N acts as a loss-of-function mutation with respect to VPS35 activity regulating synaptic transmission and AMPAR recycling in mouse cortical neurons and dopamine neuron-like cells produced from induced pluripotent stem cells of human p.D620N carriers. Such perturbations to synaptic function likely produce chronic pathophysiological stress upon neuronal circuits that may contribute to neurodegeneration in this, and other, forms of parkinsonism.


Asunto(s)
Mutación Missense , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Receptores de Glutamato/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Espinas Dendríticas/metabolismo , Humanos , Ratones , Transporte de Proteínas , Sinapsis/metabolismo
4.
Neuroscience ; 198: 252-73, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21907762

RESUMEN

Huntington's disease (HD) is a progressive, fatal neurological condition caused by an expansion of CAG (glutamine) repeats in the coding region of the Huntington gene. To date, there is no cure but great strides have been made to understand pathophysiological mechanisms. In particular, genetic animal models of HD have been instrumental in elucidating the progression of behavioral and physiological alterations, which had not been possible using classic neurotoxin models. Our groups have pioneered the use of transgenic HD mice to examine the excitotoxicity hypothesis of striatal neuronal dysfunction and degeneration, as well as alterations in excitation and inhibition in striatum and cerebral cortex. In this review, we focus on synaptic and receptor alterations of striatal medium-sized spiny (MSNs) and cortical pyramidal neurons in genetic HD mouse models. We demonstrate a complex series of alterations that are region-specific and time-dependent. In particular, many changes are bidirectional depending on the degree of disease progression, that is, early vs. late, and also on the region examined. Early synaptic dysfunction is manifested by dysregulated glutamate release in striatum followed by progressive disconnection between cortex and striatum. The differential effects of altered glutamate release on MSNs originating the direct and indirect pathways is also elucidated, with the unexpected finding that cells of the direct striatal pathway are involved early in the course of the disease. In addition, we review evidence for early N-methyl-D-aspartate receptor (NMDAR) dysfunction leading to enhanced sensitivity of extrasynaptic receptors and a critical role of GluN2B subunits. Some of the alterations in late HD could be compensatory mechanisms designed to cope with early synaptic and receptor dysfunctions. The main findings indicate that HD treatments need to be designed according to the stage of disease progression and should consider regional differences.


Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Factores de Tiempo
5.
Neurodegener Dis ; 8(4): 230-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21282937

RESUMEN

BACKGROUND: The introduction of gene testing for Huntington's disease (HD) has enabled the neuropsychiatric and cognitive profiling of human gene carriers prior to the onset of overt motor and cognitive symptoms. Such studies reveal an early decline in working memory and executive function, altered EEG and a loss of striatal dopamine receptors. Working memory is processed in the prefrontal cortex and modulated by extrinsic dopaminergic inputs. OBJECTIVE: We sought to study excitatory synaptic function and plasticity in the medial prefrontal cortex of mouse models of HD. METHODS: We have used 2 mouse models of HD, carrying 89 and 116 CAG repeats (corresponding to a preclinical and symptomatic state, respectively) and performed electrophysiological field recording in coronal slices of the medial prefrontal cortex. RESULTS: We report that short-term synaptic plasticity and long-term potentiation (LTP) are impaired and that the severity of impairment is correlated with the size of the CAG repeat. Remarkably, the deficits in LTP and short-term plasticity are reversed in the presence of a D(1) dopamine receptor agonist (SKF38393). CONCLUSION: In a previous study, we demonstrated that a deficit in long-term depression (LTD) in the perirhinal cortex could also be reversed by a dopamine agonist. These and our current data indicate that inadequate dopaminergic modulation of cortical synaptic function is an early event in HD and may provide a route for the alleviation of cognitive dysfunction.


Asunto(s)
Enfermedad de Huntington/fisiopatología , Potenciación a Largo Plazo/fisiología , Corteza Prefrontal/fisiopatología , Receptores de Dopamina D1/metabolismo , Animales , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Electrofisiología , Femenino , Inmunohistoquímica , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Corteza Prefrontal/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA