Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Environ Microbiol ; 19(1): 218-236, 2017 01.
Article En | MEDLINE | ID: mdl-27727485

We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2 -fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptilium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolases are required for l-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., , PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for l-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize l-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid.


Bacterial Proteins/metabolism , Sinorhizobium fredii/physiology , Sinorhizobium meliloti/physiology , Symbiosis , Thiolester Hydrolases/metabolism , Bacterial Proteins/genetics , Medicago sativa/microbiology , Nitrogen Fixation , Sinorhizobium fredii/enzymology , Sinorhizobium fredii/genetics , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/genetics , Thiolester Hydrolases/genetics
2.
Environ Microbiol ; 18(8): 2534-47, 2016 09.
Article En | MEDLINE | ID: mdl-26768651

The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.


Genome, Bacterial/genetics , Medicago sativa/microbiology , Nitrogen Fixation/genetics , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Carbohydrate Epimerases/genetics , GTP-Binding Proteins/genetics , Genomics , Replicon/genetics , Rhizobium/growth & development , Symbiosis/genetics
3.
PLoS Genet ; 10(10): e1004742, 2014 Oct.
Article En | MEDLINE | ID: mdl-25340565

Many bacteria carry two or more chromosome-like replicons. This occurs in pathogens such as Vibrio cholerea and Brucella abortis as well as in many N2-fixing plant symbionts including all isolates of the alfalfa root-nodule bacteria Sinorhizobium meliloti. Understanding the evolution and role of this multipartite genome organization will provide significant insight into these important organisms; yet this knowledge remains incomplete, in part, because technical challenges of large-scale genome manipulations have limited experimental analyses. The distinct evolutionary histories and characteristics of the three replicons that constitute the S. meliloti genome (the chromosome (3.65 Mb), pSymA megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb)) makes this a good model to examine this topic. We transferred essential genes from pSymB into the chromosome, and constructed strains that lack pSymB as well as both pSymA and pSymB. This is the largest reduction (45.4%, 3.04 megabases, 2866 genes) of a prokaryotic genome to date and the first removal of an essential chromid. Strikingly, strains lacking pSymA and pSymB (ΔpSymAB) lost the ability to utilize 55 of 74 carbon sources and various sources of nitrogen, phosphorous and sulfur, yet the ΔpSymAB strain grew well in minimal salts media and in sterile soil. This suggests that the core chromosome is sufficient for growth in a bulk soil environment and that the pSymA and pSymB replicons carry genes with more specialized functions such as growth in the rhizosphere and interaction with the plant. These experimental data support a generalized evolutionary model, in which non-chromosomal replicons primarily carry genes with more specialized functions. These large secondary replicons increase the organism's niche range, which offsets their metabolic burden on the cell (e.g. pSymA). Subsequent co-evolution with the chromosome then leads to the formation of a chromid through the acquisition of functions core to all niches (e.g. pSymB).


Chromosomes, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Sinorhizobium/genetics , Ecology , Genomics , Medicago sativa/microbiology , Plasmids/genetics , Replicon/genetics , Sinorhizobium/physiology
4.
J Bacteriol ; 196(4): 811-24, 2014 Feb.
Article En | MEDLINE | ID: mdl-24317400

Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.


Bacterial Proteins/genetics , Bacterial Toxins/genetics , Plasmids , Sequence Deletion , Sinorhizobium meliloti/growth & development , Sinorhizobium meliloti/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Gene Expression Profiling , Genetic Complementation Test , Medicago sativa/microbiology , Microbial Viability , Nitrogen Fixation , Sinorhizobium meliloti/metabolism , Sinorhizobium meliloti/physiology , Symbiosis
5.
J Bacteriol ; 195(2): 202-12, 2013 Jan.
Article En | MEDLINE | ID: mdl-23123907

Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.


Bacterial Proteins/genetics , Genes, Bacterial , Genes, Essential , Plasmids , RNA, Transfer, Arg/genetics , Sinorhizobium meliloti/genetics , Translocation, Genetic , Chromosomes, Bacterial , Gene Deletion , Sequence Homology , Sinorhizobium fredii/genetics , Sinorhizobium meliloti/growth & development , Synteny
...