Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Nucleic Acids Res ; 50(1): 207-226, 2022 01 11.
Article En | MEDLINE | ID: mdl-34931241

CTCF is crucial to the organization of mammalian genomes into loop structures. According to recent studies, the transcription apparatus is compartmentalized and concentrated at super-enhancers to form phase-separated condensates and drive the expression of cell-identity genes. However, it remains unclear whether and how transcriptional condensates are coupled to higher-order chromatin organization. Here, we show that CTCF is essential for RNA polymerase II (Pol II)-mediated chromatin interactions, which occur as hyperconnected spatial clusters at super-enhancers. We also demonstrate that CTCF clustering, unlike Pol II clustering, is independent of liquid-liquid phase-separation and resistant to perturbation of transcription. Interestingly, clusters of Pol II, BRD4, and MED1 were found to dissolve upon CTCF depletion, but were reinstated upon restoration of CTCF, suggesting a potent instructive function for CTCF in the formation of transcriptional condensates. Overall, we provide evidence suggesting that CTCF-mediated chromatin looping acts as an architectural prerequisite for the assembly of phase-separated transcriptional condensates.


CCCTC-Binding Factor/metabolism , Chromatin Assembly and Disassembly , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , HCT116 Cells , Humans , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , RNA Polymerase II/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
...