Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619117

RESUMEN

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

2.
Science ; 337(6099): 1210-2, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22955831

RESUMEN

Laboratory studies have established a number of chemical pathways by which nitrogen oxides (NO(x)) affect atmospheric organic aerosol (OA) production. However, these effects have not been directly observed in ambient OA. We report measurements of particulate organic nitrates in Bakersfield, California, the nighttime formation of which increases with NO(x) and is suppressed by high concentrations of organic molecules that rapidly react with nitrate radical (NO(3))--evidence that multigenerational chemistry is responsible for organic nitrate aerosol production. This class of molecules represents about a third of the nighttime increase in OA, suggesting that most nighttime secondary OA is due to the NO(3) product of anthropogenic NO(x) emissions. Consequently, reductions in NO(x) emissions should reduce the concentration of organic aerosol in Bakersfield and the surrounding region.

3.
J Biomater Sci Polym Ed ; 14(6): 551-65, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12901437

RESUMEN

Lactobionic acid, bearing a beta-galactose group, was coupled with chitosan to provide synthetic extracellular matrices together with poly(vinyl alcohol) (PVA). The hepatocytes encapsulated in Ba-alginate capsules with galactosylated chitosan (GC) and PVA as extracellular matrices showed aggregation morphologies as the incubation time increased. Ba-alginate-encapsulated hepatocytes with GC exhibited a higher metabolic function in albumin secretion compared to those entrapped in Ba-alginate beads and monolayer-cultured on a collagen-immobilized polystyrene dish. The ammonia removal ability of monolayer-cultured hepatocytes decreased with increasing culture time and disappeared completely after three days. In contrast, the ammonia removal ability of encapsulated and entrapped hepatocytes increased with increasing incubation time in the first seven and five days, respectively. Thereafter, the entrapped hepatocytes lost ammonia removal ability quickly while the encapsulated hepatocytes kept a relatively high ammonia removal ability up to 13 days. The trace amount of GC in the core matrices enabled encapsulated cells to enhance their ammonia removal and albumin secretion ability. The results obtained with 3-(3,4-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) also showed that the capsules incorporated with GC can provide a better microenvironment for cell aggregation along with nutrition and metabolite transfer. Due to the nature of the liquid core, the encapsulated hepatocytes showed very good mobility. This facilitated cell-cell interaction and cell-matrix interaction.


Asunto(s)
Alginatos/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Matriz Extracelular/metabolismo , Hepatocitos/metabolismo , Alcohol Polivinílico/metabolismo , Animales , Bario/química , Materiales Biocompatibles , Cápsulas , Células Cultivadas , Quitosano , Galactosa/metabolismo , Hepatocitos/citología , Masculino , Ratones , Ratones Endogámicos ICR , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA