Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1121, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925530

RESUMEN

Skeletal muscle stem cells (MuSC) are crucial for tissue homoeostasis and repair after injury. Following activation, they proliferate to generate differentiating myoblasts. A proportion of cells self-renew, re-enter the MuSC niche under the basal lamina outside the myofiber and become quiescent. Quiescent MuSC have a primary cilium, which is disassembled upon cell cycle entry. Ex vivo experiments suggest cilia are important for MuSC self-renewal, however, their requirement for muscle regeneration in vivo remains poorly understood. Talpid3 (TA3) is essential for primary cilia formation and Hedgehog (Hh) signalling. Here we use tamoxifen-inducible conditional deletion of TA3 in MuSC (iSC-KO) and show that regeneration is impaired in response to cytotoxic injury. Depletion of MuSC after regeneration suggests impaired self-renewal, also consistent with an exacerbated phenotype in TA3iSC-KO mice after repeat injury. Single cell transcriptomics of MuSC progeny isolated from myofibers identifies components of several signalling pathways, which are deregulated in absence of TA3, including Hh and Wnt. Pharmacological activation of Wnt restores muscle regeneration, while purmorphamine, an activator of the Smoothened (Smo) co-receptor in the Hh pathway, has no effect. Together, our data show that TA3 and primary cilia are important for MuSC self-renewal and pharmacological treatment can efficiently restore muscle regeneration.


Asunto(s)
Proteínas de Ciclo Celular , Cilios , Músculos , Células Satélite del Músculo Esquelético , Células Madre , Animales , Ratones , Células Cultivadas , Cilios/genética , Cilios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Músculos/citología , Células Satélite del Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/genética , Células Madre/citología
2.
Commun Biol ; 6(1): 558, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225862

RESUMEN

Single-cell approaches have revealed that the haematopoietic hierarchy is a continuum of differentiation, from stem cell to committed progenitor, marked by changes in gene expression. However, many of these approaches neglect isoform-level information and thus do not capture the extent of alternative splicing within the system. Here, we present an integrated short- and long-read single-cell RNA-seq analysis of haematopoietic stem and progenitor cells. We demonstrate that over half of genes detected in standard short-read single-cell analyses are expressed as multiple, often functionally distinct, isoforms, including many transcription factors and key cytokine receptors. We observe global and HSC-specific changes in gene expression with ageing but limited impact of ageing on isoform usage. Integrating single-cell and cell-type-specific isoform landscape in haematopoiesis thus provides a new reference for comprehensive molecular profiling of heterogeneous tissues, as well as novel insights into transcriptional complexity, cell-type-specific splicing events and consequences of ageing.


Asunto(s)
Empalme Alternativo , Células Madre , Isoformas de Proteínas/genética , Diferenciación Celular/genética
3.
Trends Genet ; 38(8): 831-843, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35537880

RESUMEN

Single-cell transcriptomic approaches have revolutionised the study of complex biological systems, with the routine measurement of gene expression in thousands of cells enabling construction of whole-organism cell atlases. However, the transcriptome is just one layer amongst many that coordinate to define cell type and state and, ultimately, function. In parallel with the widespread uptake of single-cell RNA-seq (scRNA-seq), there has been a rapid emergence of methods that enable multiomic profiling of individual cells, enabling parallel measurement of intercellular heterogeneity in the genome, epigenome, transcriptome, and proteomes. Linking measurements from each of these layers has the potential to reveal regulatory and functional mechanisms underlying cell behaviour in healthy development and disease.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Transcriptoma/genética
4.
Ecotoxicology ; 28(8): 938-948, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31402411

RESUMEN

The paper reports the results of a laboratory test on the bioaccumulation and toxicological effects of sub-lethal soil concentration of copper, a widely used fungicide in organic farming, on DNA damage, a critical marker increasingly used in ecotoxicology in the earthworm Eisenia andrei. In the same experimental setting we evaluated gene expression of classical biomarker of stress induced by xenobiotic. [Heat Shock Protein 70 (HSP70) and Metallothionein (MET)], as well as genes coding for enzymes involved in detoxification of reactive oxygen species [Superoxide dismutase (SOD) and catalase (CAT)]. Additionally, expression of genes involved in the immune response were investigated: a Toll-like receptor (TLR), a receptor with cytolytic activity named Cytolytic Factor (CCF) and two antimicrobial peptides, fetidin (FET) and lysenin (LYS). Results showed significant time-dependent bioaccumulation of Cu and DNA damage at concentrations remarkably lower than those found in most agricultural soils worldwide. MET was increased as was FET and TLR. The present work gives new insights into the mechanisms of sub-lethal toxicity of copper as an environmental pollutant and in the identification of novel sub-lethal biomarkers of cellular response to the stressor such as immune response genes.


Asunto(s)
Cobre/toxicidad , Biomarcadores Ambientales/efectos de los fármacos , Fungicidas Industriales/toxicidad , Expresión Génica/efectos de los fármacos , Oligoquetos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Biomarcadores Ambientales/genética , Oligoquetos/genética , Estrés Fisiológico
5.
Nat Genet ; 50(9): 1262-1270, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104763

RESUMEN

The genomic complexity of profound copy number aberrations has prevented effective molecular stratification of ovarian cancers. Here, to decode this complexity, we derived copy number signatures from shallow whole-genome sequencing of 117 high-grade serous ovarian cancer (HGSOC) cases, which were validated on 527 independent cases. We show that HGSOC comprises a continuum of genomes shaped by multiple mutational processes that result in known patterns of genomic aberration. Copy number signature exposures at diagnosis predict both overall survival and the probability of platinum-resistant relapse. Measurement of signature exposures provides a rational framework to choose combination treatments that target multiple mutational processes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mutación , Neoplasias Ováricas/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genómica/métodos , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Secuenciación Completa del Genoma/métodos
6.
Proteomics ; 18(18): e1700312, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29644800

RESUMEN

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.


Asunto(s)
Biomarcadores/análisis , Linaje de la Célula , Epigenómica/métodos , Genómica/métodos , Metabolómica/métodos , Proteómica/métodos , Análisis de la Célula Individual/métodos , Animales , Humanos , Fenotipo
7.
Aquat Toxicol ; 186: 28-39, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28246045

RESUMEN

Waterways are increasingly being contaminated by chemical compounds that can disrupt the endocrinology of organisms. One such compound is 17α-ethinyl estradiol (EE2), a synthetic estrogen used in the contraceptive pill. Despite considerable research interest in the effects of EE2 on reproduction and gene expression, surprisingly, only a few studies have capitalised on technologies, such as next-generation sequencing (NGS), to uncover the molecular pathways related to EE2 exposure. Accordingly, using high-throughput sequencing technologies, the aim of our study was to explore the effects of EE2 on brain transcriptome in wild-type male and female guppy (Poecilia reticulata). We conducted two sets of experiments, where fish were exposed to EE2 (measured concentrations: 8ng/L and 38ng/L) in a flow-through system for 21days. The effects on the brain transcriptome on both males and females were assessed using Illumina sequencing (MiSeq and HiSeq) platform followed by bioinformatics analysis (edgeR, DESeq2). Here, we report that exposure to EE2 caused both up- and downregulation of specific transcript abundances, and affected transcript abundance in a sex-specific manner. Specifically, we found 773 transcripts, of which 60 were male-specific, 61 female-specific and 285 treatment-specific. EE2 affected expression of 165 transcripts in males, with 88 downregulated and 77 upregulated, while in females, 120 transcripts were affected with 62 downregulated and 58 upregulated. Finally, RT-qPCR validation demonstrated that expression of transcripts related to transposable elements, neuroserpin and heat shock protein were significantly affected by EE2-exposure. Our study is the first to report brain transcriptome libraries for guppies exposed to EE2. Not only does our study provide a valuable resource, it offers insights into the mechanisms underlying the feminizing effects on the brains of organisms exposed to environmentally realistic concentrations of EE2.


Asunto(s)
Encéfalo/metabolismo , Etinilestradiol/toxicidad , Poecilia/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Contaminantes Químicos del Agua/toxicidad , Animales , Encéfalo/efectos de los fármacos , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Biblioteca de Genes , Masculino , Anotación de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/efectos de los fármacos
8.
Springerplus ; 5: 302, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064673

RESUMEN

Earthworms play an essential role in providing soil fertility and may represent an important soil contamination bio-indicator. They are able to ingest soil particles, adsorb substances throughout the intestinal epithelium into the coelomic cavity, where chemicals can come in direct contact with coelomic fluid. Earthworm coelomic fluid shelters leucocytes (coelomocytes) that differ significantly both structurally and functionally. Cellular variability could lead to different susceptibility towards contaminants possibly present in soil ecosystem. In order to define population specific dose response to chemicals and to identify a homogeneous cell population to be used as a relevant biomarker, we investigated different coelomocytes subpopulation, obtained by Percoll density gradient centrifugation (5-35 %), exposed ex vivo to H2O2 in the range of concentration 15-120 µM. DNA damage levels were assessed by the comet assay on unseparated coelomocytes and on three enriched cellular fractions (light, medium and heavy density subpopulations). All tested samples showed a dose-response genotoxic effect following H2O2 exposure. Moreover, light density sub-population appeared more susceptible to oxidative insult highlighted by a significant increase in DNA damage indexes at lower concentrations of H2O2. Present data suggested that in these experimental condition coelomocytes light fraction may represent a more sensitive biomarker of genotoxic insult.

9.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26909576

RESUMEN

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metilación de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Histona Demetilasas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteínas Nucleares/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores Citoplasmáticos y Nucleares/genética , Análisis de Supervivencia , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra
10.
Free Radic Biol Med ; 49(3): 408-15, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20450973

RESUMEN

Numerous sunscreens contain titanium dioxide (TiO(2)) because of its ability to reflect, scatter, and absorb UV radiation, thus preventing sunlight-related skin disorders. Since TiO(2) is well known to generate reactive oxygen species (ROS) under photoexcitation, it is chemically modified when used in sunscreens. In the present study, five modified TiO(2) particles, specifically developed and marketed for sunscreens, were tested using different in vitro models, including cultured human skin fibroblasts (HuDe), to investigate their possible photocatalytic effects following UVA exposure. The results obtained show that the type of modification and crystal form determine their ability to (a) induce photobleaching of the DPPH radical, (b) photodegrade deoxyribose, (c) reduce cell viability, (d) increase/decrease DNA damage, and (e) increase/decrease intracellular ROS. This research concludes that some modified TiO(2) particles still retain photocatalytic activity under the experimental conditions employed, especially those in which the anatase crystal form of TiO(2) is present. The penetration of TiO(2) nanosized particles into the viable epidermis of skin is still under debate; thus, the results presented here contribute to gaining further knowledge on the potential effects of TiO(2) particles at the cellular level, in the worst possible case that they do penetrate.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Titanio/farmacología , Titanio/efectos de la radiación , Rayos Ultravioleta , Compuestos de Bifenilo/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Daño del ADN/efectos de los fármacos , Humanos , Nanopartículas , Procesos Fotoquímicos , Picratos/química , Protectores Solares/farmacología , Titanio/efectos adversos , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...