Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 31(17): 6493-503, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21525290

RESUMEN

In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-κB (NF-κB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKα/IKKß kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKα kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKα and IKKß phosphorylation and RelA nuclear translocation, suggesting NF-κB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKα, IKKß, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-κB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-κB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-x(L) overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.


Asunto(s)
Apoptosis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas Motoras/fisiología , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Proteína de Unión a CREB/metabolismo , Supervivencia Celular , Células Cultivadas , Cromonas/farmacología , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Morfolinas/farmacología , Neuronas Motoras/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Péptidos/farmacología , Fosforilación/fisiología , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Transfección/métodos , Proteína bcl-X/metabolismo
2.
Neurobiol Dis ; 42(3): 415-26, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21333739

RESUMEN

Spinal muscular atrophy (SMA) is a motoneuron disorder characterized by deletions or specific mutations in the Survival Motor Neuron gene (SMN). SMN is ubiquitously expressed and has a general role in the assembly of small nuclear ribonucleoprotein (snRNP) and pre-mRNA splicing requirements. However, in motoneuron axons SMN deficiency results in inappropriate levels of certain transcripts in the distal axon, suggesting that the specific susceptibility of motoneurons to SMN deficiency is related to a specialized function in these cells. Although mouse models of SMA have been generated and are useful for in vivo and in vitro studies, the limited number of isolated MNs that could be obtained from them makes it difficult to perform biochemical, genetic and pharmacological approaches. We describe here an in vitro model of isolated embryonic mouse motoneurons in which the cellular levels of endogenous SMN are reduced. These cells show neurite degeneration and cell death after several days of SMN knockdown. We found that the over-expression of the anti-apoptotic protein Bcl-x(L) into motoneurons rescues these cells from the phenotypic changes observed. This result demonstrates that Bcl-x(L) signaling could be a possible pharmacological target of SMA therapeutics.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneración Nerviosa/metabolismo , Neuritas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína bcl-X/metabolismo , Análisis de Varianza , Animales , Western Blotting , Muerte Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuritas/patología , Ratas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína bcl-X/genética
3.
J Neurochem ; 110(6): 1842-54, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19627436

RESUMEN

Intracellular calcium (Ca(2+)) concentration determines neuronal dependence on neurotrophic factors (NTFs) and susceptibility to cell death. Ca(2+) overload induces neuronal death and the consequences are thought to be a probable cause of motoneuron (MN) degeneration in neurodegenerative diseases. In the present study, we show that membrane depolarization with elevated extracellular potassium (K(+)) was toxic to cultured embryonic mouse spinal cord MNs even in the presence of NTFs. Membrane depolarization induced an intracellular Ca(2+) increase. Depolarization-induced toxicity and increased intracellular Ca(2+) were blocked by treatment with antagonists to some of the voltage-gated Ca(2+) channels (VGCCs), indicating that Ca(2+) influx through these channels contributed to the toxic effect of depolarization. Ca(2+) activates the calpains, cysteine proteases that degrade a variety of substrates, causing cell death. We investigated the functional involvement of calpain using a calpain inhibitor and calpain gene silencing. Pre-treatment of MNs with calpeptin (a cell-permeable calpain inhibitor) rescued MNs survival; calpain RNA interference had the same protective effect, indicating that endogenous calpain contributes to the cell death caused by membrane depolarization. These findings suggest that MNs are especially vulnerable to extracellular K(+) concentration, which induces cell death by causing both intracellular Ca(2+) increase and calpain activation.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas Motoras/fisiología , Médula Espinal/citología , Análisis de Varianza , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/metabolismo , Líquido Intracelular/efectos de los fármacos , Líquido Intracelular/metabolismo , Proteínas con Homeodominio LIM , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neuronas Motoras/efectos de los fármacos , Factores de Crecimiento Nervioso/farmacología , Cloruro de Potasio/farmacología , ARN Interferente Pequeño/farmacología , Factores de Tiempo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA