Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transbound Emerg Dis ; 69(6): 3388-3396, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36057949

RESUMEN

Betacoronaviruses, containing sarbecoviruses such as severe acute respiratory syndrome coronaviruses (SARS-CoV) and merbecovirus such as Middle East respiratory syndrome coronavirus (MERS-CoV), caused three human outbreaks in the past 2 decades; in particular, SARS-CoV-2 has caused the coronavirus disease 2019 pandemic. Since the ancestor of betacoronaviruses originated from wild bats, unidentified bat betacoronaviruses are presumed to be transmitted to humans in the future. In this study, we detected novel bat merbecoviruses from Vespertilio sinensis and Eptesicus japonensis, belonging to the family Vespertilionidae, in Japan. We found that these merbecoviruses were phylogenetically most closely related to the those previously detected in China. Alignment of the predicted receptor-binding motif on the spike proteins indicated that the Japanese bat merbecoviruses did not possess the specific amino acid residues that could be responsible for binding of MERS-CoV to the human dipeptidyl peptidase-4 receptor, which is unlikely to infect humans. This study demonstrated that bat merbecoviruses are widely conserved in multiple bat species of Vespertilionidae in East Asia, emphasizing the need for extensive epidemiological and biological studies on bat betacoronaviruses to facilitate the risk assessment of their spillover potential to humans.


Asunto(s)
COVID-19 , Quirópteros , Coronaviridae , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Animales , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Japón/epidemiología , COVID-19/veterinaria , SARS-CoV-2 , Coronaviridae/genética , Filogenia
2.
Virus Genes ; 54(4): 599-602, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29845506

RESUMEN

Several recent studies have reported that various bat species harbor bat hepatitis E viruses (BatHEV) belonging to the family Hepeviridae, which also contains human hepatitis E virus (HEV). The distribution and ecology of BatHEV are not well known. Here, we collected and screened 81 bat fecal samples from nine bat species in Japan to detect BatHEV RNA by RT-PCR using HEV-specific primers, and detected three positive samples. Sequence and phylogenetic analyses indicated that these three viruses were BatHEVs belonging to genus Orthohepevirus D like other BatHEV strains reported earlier in various countries. These data support the first detection of BatHEVs in Japanese microbats, indicating their wide geographical distribution among multiple bat species.


Asunto(s)
Quirópteros/virología , Virus de la Hepatitis E/genética , Hepatitis Viral Animal/virología , Animales , Línea Celular , Geografía Médica , Virus de la Hepatitis E/clasificación , Japón/epidemiología , Filogenia , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...