Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39185455

RESUMEN

A series of tetra-O-acetyl-α-d-glucopyranosyl thioureas 8a-l of substituted 2-aminopyrimidines 4a-l have been designed and synthesized. The latter were prepared from corresponding chalcones 3a-l of p-bromoacetophenone and appropriate substituted benzaldehydes by their reaction with guanidine. The target thiourea compounds 8a-l exhibited significant inhibitory activity in vitro against enzymes that were related to type 2 diabetes mellitus, including α-amylase, α-glucosidase, DPP-4, and PTP1B. Amongst these thioureas, compound 8k with an ortho-methoxy group was the most potential enzyme inhibitor against α-amylase with an IC50 value of 9.72 ± 0.34 µM. Its meta-isomer 8j was the strongest inhibitor against α-glucosidase with IC50 = 9.73 ± 0.72 µM. In the inhibition against DPP-4, compound 8f with a para-bromo substituent exhibited the strongest activity with an IC50 value of 2.53 ± 0.03 nM. In the inhibition against PTP1B, compound 8h with a para-isopropyl substituent had the strongest inhibitory activity with an IC50 value of 2.74 ± 0.03 µM. The enzyme kinetics of the most active compounds, including 8j, 8f and 8h against α-glucosidase, DPP-4, and PTP1B, respectively, were studied. The obtained results showed that 8j was a competitive α-glucosidase inhibitor with an inhibitory constant K I value of 9.31 µM. Compound 8f was a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.57 µM. Compound 8h was also a non-competitive inhibitor for DDP-4 with an inhibitory constant K I value of 12.41 µM. The cytotoxicity of the most active compounds, including 8f and 8k (against α-amylase), 8i and 8j (against α-glucosidase), 8a, 8f, and 8g (against DPP-4), and 8d, 8f, and 8h (against PTP1B) was screened. The obtained cytotoxicity showed that all tested inhibitors were noncytotoxic to human normal cell line 3T3. Induced fit docking simulations of all synthesized compounds 8a-l were performed on four enzymes 4W93 (for α-amylase), 3TOP (for α-glucosidase), 3W2T (for DPP-4), and 1NNY (for PTP1B). Key interactions of each of these ligands with residues in the active pocket of each studied enzyme have been shown.

2.
Heliyon ; 10(5): e26783, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434284

RESUMEN

In this study, we investigated the possibility of a photocatalytic system that uses graphene-quantum-dot (GQD)-deposited graphitic carbon nitride (g-C3N4) to treat tetracycline (TC) and other organic compounds generated from an in-situ-recirculatory-aquaculture-system (RAS)-like shrimp farming pond. GQDs were successfully deposited on the exfoliated g-C3N4 base through a hydrothermal treatment. The results showed that the incorporation of GQDs into the g-C3N4 enhanced its porosity without aggregating its mesoporous structure. The GQDs-deposited g-C3N4 photocatalysts revealed sheet-like structures with nanopores on their surface that facilitate photocatalysis. More than 90% of the TC was removed by the photocatalysts under UV-LED irradiation. Low loadings of GQDs over g-C3N4 resulted in a faster and more effective photocatalysis of TC, mainly driven by.O2- radicals. The photocatalysts were also applicable in the degradation of organic compounds with 27% of the total organic compounds (TOC) being removed from the wastewater of a RAS-like shrimp farming pond.

3.
Arch Pharm (Weinheim) ; 357(5): e2300557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321839

RESUMEN

A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.


Asunto(s)
Acetilcolinesterasa , Benzotiazoles , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Tiourea , Tiourea/química , Tiourea/farmacología , Benzotiazoles/química , Benzotiazoles/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Simulación del Acoplamiento Molecular , Cinética , Diseño de Fármacos , Concentración 50 Inhibidora , Monoaminooxidasa/metabolismo
4.
RSC Med Chem ; 14(12): 2751-2767, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107183

RESUMEN

Some substituted thioureas (6a-i) containing a 1,3,4-thiadiazole ring were synthesized by the reaction of the corresponding substituted 2-amino-1,3,4-thiadiazoles 3a-i with p-toluenesulfonyl isocyanate in a one-pot procedure. The antibacterial and antifungal activities of these sulfonyl thioureas were estimated using a minimum inhibitory concentration protocol. Almost all the thioureas exhibited remarkable antimicrobial activity. Amongst the studied compounds, thioureas 6a, 6c, 6h, and 6i were better inhibitors against the bacterium S. aureus, with MIC values of 0.78-3.125 µg mL-1. These compounds were also tested for their inhibition against S. aureus enzymes, including enzymes of DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase. Amongst the compounds, 6h was a strong inhibitor, with IC50 values of 1.22, 53.78, and 0.23, respectively. Induced fit docking calculations were performed to observe the binding efficiency and steric interactions of these compounds. The obtained results showed that compound 6h was compatible with the active sites of S. aureus DNA gyrase 2XCS. This ligand interacted with residues ASP1083 (chain D), MET1121 (chain B), ARG1122 (chain D), and also with HOH2035, HOH2089, HOH2110, HOH2162. Molecular dynamics simulation in a water solvent system showed that the active interactions with residues ASP083 and MET1121 (chain B), along with ASP1083, MET1121, and ARG1122 (chain D), played an important role in stabilizing complex 6h/2XCS in the active pocket.

5.
Environ Technol ; 42(11): 1772-1786, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31622175

RESUMEN

Treatment of the volatile organic compounds (VOCs) especially aromatic compounds such as toluene at low temperature and in the highly humid condition is currently a great challenge. New dual functional adsorbent/catalysts have been developed in this study to minimize the mass-transfer limitation at low temperature. The ready-to-practically-use materials, which consisted nano-sized noble metal (Au, Pd, Au-Pd) supported on granular carbon (GC) have been prepared using a metal-sol method. The surface morphology, and structure of these granular materials were characterized to confirm the presence of nano-sized noble metal on the GC as well as the properties of the dual functional adsorbent/catalyst. The results of catalytic performance revealed that the presence of Pd played an important role in the formation of nano Au particles, which were the catalytic active-site for toluene oxidation. At 60% relative humidity and 150°C the dual functional adsorbent/catalyst, Au-Pd/GC, exhibited 97.2% toluene removal. Importantly, the kinetic analysis for the catalytic oxidation of nano-sized 0.5%Au-0.27%Pd/GC catalyst showed that the Langmuir-Hinshelwood mechanism provided a good fit towards the experimental data and allowed to determine the kinetic parameters of the reaction-rate law -rA=k⋅KA⋅CA1+KA⋅CA⋅KO2⋅CO21+KO2.CO2. The activation energy, adsorption enthalpy of toluene, and oxygen on the catalyst were reported.


Asunto(s)
Carbono , Tolueno , Catálisis , Cinética , Temperatura
6.
Bioorg Med Chem Lett ; 30(24): 127664, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152379

RESUMEN

Thiosemicarbazones 5a-j were synthesized with yields of 45-68% by condensation of 3-acetylcoumarins 3a-j and tetra-O-acetyl-ß-d-thiosemicarbazide 4. All obtained thiosemicarbazones were screened for anti-microorganic activities against bacteria (B. subtilis, S. aureus, S. epidermidis, E. coli, P. aeruginosa, K. pneumoniae, S. typhimurium) and fungi (A. niger, C. albicans, S. cerevisiae, and A. flavus). Some compounds had significant inhibitory activity with MICs of 0.78-3.125 µM in comparison with 5a, including 5e,h,i for S. aureus, and 5c,f,i for S. epidermidis (Gram-(+) bacteria), 5c,f,g for E.coli, 5f for K. pneumoniae, 5b,c,g for P. aeruginosa, and 5i for S. typhimurium (Gram-(-) bacteria), 5d,h,i for A. niger, 5i for A. flavus, 5b,d,e,h for C. albicans, and 5i for S. cerevisiae. Compounds exhibited excellent activity against tested microorganism with MIC = 0.78 µM, including 5h,i (against S. aureus), 5h (against C. albicans), and 5i (against S. cerevisiae).


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cumarinas/química , Cumarinas/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/síntesis química , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Cumarinas/síntesis química , Hongos/efectos de los fármacos , Glucosa/análogos & derivados , Glucosa/síntesis química , Glucosa/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Relación Estructura-Actividad , Tiosemicarbazonas/síntesis química
7.
Materials (Basel) ; 12(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137873

RESUMEN

Radiotherapy side-effects present serious problems in cancer treatment. Melanin, a natural polymer with low toxicity, is considered as a potential radio-protector; however, its application as an agent against irradiation during cancer treatment has still received little attention. In this study, nanomelanin particles were prepared, characterized and applied in protecting the spleens of tumor-bearing mice irradiated with X-rays. These nanoparticles had sizes varying in the range of 80-200 nm and contained several important functional groups such as carboxyl (-COO), carbonyl (-C=O) and hydroxyl (-OH) groups on the surfaces. Tumor-bearing mice were treated with nanomelanin at a concentration of 40 mg/kg before irradiating with a single dose of 6.0 Gray of X-ray at a high dose rate (1.0 Gray/min). Impressively, X-ray caused mild splenic fibrosis in 40% of nanomelanin-protected mice, whereas severe fibrosis was observed in 100% of mice treated with X-ray alone. Treatment with nanomelanin also partly rescued the volume and weight of mouse spleens from irradiation through promoting the transcription levels of splenic Interleukin-2 (IL-2) and Tumor Necrosis Factor alpha (TNF-α). More interestingly, splenic T cell and dendritic cell populations were 1.91 and 1.64-fold higher in nanomelanin-treated mice than those in mice which received X-ray alone. Consistently, the percentage of lymphocytes was also significantly greater in blood from nanomelanin-treated mice. In addition, nanomelanin might indirectly induce apoptosis in tumor tissues via activation of TNF-α, Bax, and Caspase-3 genes. In summary, our results demonstrate that nanomelanin protects spleens from X-ray irradiation and consequently enhances immunoactivity in tumor-bearing mice; therefore, we present nanomelanin as a potential protector against damage from radiotherapy in cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA