Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Food Chem X ; 18: 100640, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37008720

Rubiscolin-6 (amino acid sequence: YPLDLF) is a selective δ-opioid receptor peptide isolated from spinach Rubisco. Its synthetic analogue, peptide YPMDIV is the most potent described so far for its increased opioid activity, thus in this work it was considered as lead compound for the design of twelve new analogues e.g. LMAS1-12. Firstly all the novel compounds have been tested for their antinociceptive and anti-inflammatory capacity in vitro and in vivo in order to evaluate their ability to maintain or loss the original activity. Among them peptides LMAS5-8 gave the best results, thus their antioxidant properties have been investigated along with their enzymatic inhibitory ability. Peptide LMAS6 shows a strong antioxidant (154.25 mg TE/g CUPRAC) and inhibitor activity on tyrosinase (84.49 mg KAE/g), indicating a potential role in food industry as anti-browning agent, while peptides LMAS5 and LMAS7 possess a modest cholinesterase inhibitory activity suggesting a conceivable use for nutraceuticals production.

2.
ACS Chem Neurosci ; 14(3): 506-515, 2023 02 01.
Article En | MEDLINE | ID: mdl-36651179

The discovery of efficacious and safe analgesics with reduced side effects is the foremost challenge in the pain field. In this work, we report the in vitro and in vivo evaluation of linear and cyclic analogues of biphalin with the aim to complete the series of structural modifications previously applied in the development of opioid peptides incorporating a xylene bridge. Replacement of Tyr1,1' by Dmt (2,5-dimethyltyrosine) in the linear biphalin analogue AM94 and cyclic analogue MACE4 resulted in two new compounds (namely, MJ2 and MJ5) endowed with improved KOR/MOR/DOR binding affinity. Both compounds showed a strong antinociceptive profile in in vivo models of nociception, allodynia, and hyperalgesia via the tail flick, hot plate, and formalin tests after intracerebroventricular and subcutaneous administration. One of these ligands, MJ2, was also tested in tolerance and dependence studies, exhibiting very little withdrawal symptoms.


Analgesics, Opioid , Peptides, Cyclic , Humans , Analgesics, Opioid/pharmacology , Peptides, Cyclic/pharmacology , Ligands , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/chemistry , Opioid Peptides , Hyperalgesia/drug therapy , Receptors, Opioid, mu/metabolism
3.
ACS Med Chem Lett ; 13(11): 1707-1714, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-36385929

Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the lead compound FF(d-Nle)R-NH2 (FE200041) were contemplated with aromatic side chains containing d-amino acids, such as (d)-pF-Phe, (d)-mF-Phe, (d)-oF-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity in vivo following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.

4.
Bioorg Chem ; 115: 105219, 2021 10.
Article En | MEDLINE | ID: mdl-34343741

The use of α-amino-γ lactam of Freidinger (Agl) may serve as an impressive method to increase the biological stability of peptides and an appropriate tool to elucidate their structure-activity relationships. The endomorphin-2 (EM-2) and [D-Ala2, des-Leu5] enkephalin amide (DAPEA) are two linear opioid tetrapeptides agonists of MOR and MOR/DOR respectively. Herein, we investigated the influence of the incorporation of (R/S)-Agl in position 2 and 3 on the biological profile of the aforementioned products in vitro and in vivo. Receptor radiolabeled displacement and functional assays were used to measure in vitro the binding affinity and receptors activation of the novel analogues. The mouse tail flick and formalin tests allowed to observe their antinociceptive effect in vivo. Data revealed that peptide A2D was able to selectively bind and activate MOR with a potent antinociceptive effect after intracerebroventricular (i.c.v.) administration, performing better than the parent compounds EM-2 and DAPEA. Molecular docking calculations helped us to understand the key role exerted by the Freidinger Agl moiety in A2D for the interaction with the MOR binding pocket.


Amides/pharmacology , Enkephalins/pharmacology , Lactams/pharmacology , Oligopeptides/pharmacology , Receptors, Opioid, mu/agonists , Amides/administration & dosage , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Enkephalins/administration & dosage , Enkephalins/chemistry , Infusions, Intraventricular , Lactams/administration & dosage , Lactams/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Structure-Activity Relationship
5.
Molecules ; 26(16)2021 Aug 06.
Article En | MEDLINE | ID: mdl-34443366

The kappa opioid receptor (KOR) represents an attractive target for the development of drugs as potential antidepressants, anxiolytics and analgesics. A robust computational approach may guarantee a reduction in costs in the initial stages of drug discovery, novelty and accurate results. In this work, a virtual screening workflow of a library consisting of ~6 million molecules was set up, with the aim to find potential lead compounds that could manifest activity on the KOR. This in silico study provides a significant contribution in the identification of compounds capable of interacting with a specific molecular target. The main computational techniques adopted in this experimental work include: (i) virtual screening; (ii) drug design and leads optimization; (iii) molecular dynamics. The best hits are tripeptides prepared via solution phase peptide synthesis. These were tested in vivo, revealing a good antinociceptive effect after subcutaneous administration. However, further work is due to delineate their full pharmacological profile, in order to verify the features predicted by the in silico outcomes.


Computer Simulation , Drug Design , Oligopeptides/chemistry , Oligopeptides/metabolism , Receptors, Opioid, kappa/metabolism , Ligands , Molecular Dynamics Simulation , Protein Conformation , Receptors, Opioid, kappa/chemistry
6.
Biomedicines ; 9(6)2021 May 26.
Article En | MEDLINE | ID: mdl-34073550

Glycyrrhiza glabra, commonly known as liquorice, contains several bioactive compounds such as flavonoids, sterols, triterpene, and saponins; among which, glycyrrhizic acid, an oleanane-type saponin, is the most abundant component in liquorice root. Diabetic peripheral neuropathy is one of the major complications of diabetes mellitus, leading to painful condition as neuropathic pain. The pathogenetic mechanism of diabetic peripheral neuropathy is very complex, and its understanding could lead to a more suitable therapeutic strategy. In this work, we analyzed the effects of ammonium glycyrrhizinate, a derivate salt of glycyrrhizic acid, on an in vitro system, neuroblastoma cells line SH-SY5Y, and we observed that ammonium glycyrrhizinate was able to prevent cytotoxic effect and mitochondrial fragmentation after high-glucose administration. In an in vivo experiment, we found that a short-repeated treatment with ammonium glycyrrhizinate was able to attenuate neuropathic hyperalgesia in streptozotocin-induced diabetic mice. In conclusion, our results showed that ammonium glycyrrhizinate could ameliorate diabetic peripheral neuropathy, counteracting both in vitro and in vivo effects induced by high glucose, and might represent a complementary medicine for the clinical management of diabetic peripheral neuropathy.

7.
Curr Med Chem ; 27(33): 5446-5479, 2020.
Article En | MEDLINE | ID: mdl-31560283

Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a ß-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.


Prion Diseases , Animals , Prion Diseases/drug therapy , Prions , Protein Folding , Structure-Activity Relationship
9.
Biomolecules ; 9(9)2019 09 16.
Article En | MEDLINE | ID: mdl-31527522

The endocannabinoid system represents an integrated neuronal network involved in the control of several organisms' functions, such as feeding behavior. A series of hybrids of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (mimonabant), a well-known inverse agonist of the type-1 cannabinoid receptor (CB1), once used as an antiobesity drug, and the N-(2S)-substitutes of 1-[(4-fluorophenyl)methyl]indazole-3-carboxamide with 1-amino-3-methyl-1-oxobutane (AB-Fubinaca), 1-amino-3,3-dimethyl-1-oxobutane (ADB-Fubinaca), and 3-methylbutanoate (AMB-Fubinaca), endowed with potent agonistic activity towards cannabinoid receptors CB1 and CB2 were in solution as C-terminal amides, acids, methyl esters and N-methyl amides. These compounds have been studied by binding assays to cannabinoid receptors and by functional receptor assays, using rat brain membranes in vitro. The most active among them as an agonist, (S)-1-(2,4-dichlorobenzyl)-N-(3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (LONI11), and an antagonist, (S)-2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3-methylbutanoic acid (LONI4), were tested in vivo in mic, to evaluate their ability to stimulate or suppress feeding behavior after intraperitoneal (i.p.) administration. For a LONI11 formalin test and a tail flick test after an administration by the subcutaneous (s.c.) and intracerebroventricular (i.c.v.) routes, respectively, were also carried out in vivo in mice to investigate the antinociceptive property at the central and peripheral levesl. We observed a significant orexant effect for LONI11 and an intense anorexant effect for (S)-methyl 2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (LONI2) and LONI4. In zymosan-induced edema and hyperalgesia, LONI11 reduced the percent of paw volume increase and paw latency after s.c. administration, also suggesting a possible peripheral anti-inflammatory activity.


Edema/drug therapy , Indazoles/administration & dosage , Indazoles/chemical synthesis , Rimonabant/chemistry , Valine/analogs & derivatives , Animals , Disease Models, Animal , Edema/chemically induced , Feeding Behavior/drug effects , Indazoles/chemistry , Indazoles/pharmacology , Injections, Intraperitoneal , Injections, Subcutaneous , Male , Mice , Molecular Structure , Rats , Receptors, Cannabinoid/physiology , Valine/chemistry , Zymosan/adverse effects
10.
Pharmacol Res ; 147: 104351, 2019 09.
Article En | MEDLINE | ID: mdl-31315067

Gout is a paradigm of acute, self-limiting inflammation caused by the deposition of monosodium urate (MSU) crystals within intra-and/or peri-articular areas, leading to excruciating pain, joint swelling and stiffness. The infiltration of leukocytes drives the inflammatory response and remains an attractive target for therapeutic intervention. In this context, emerging evidence supports the view that systemic differentiation of Th17 cells and their in situ infiltration as one of the potential mechanisms by which these cells, and their main product IL-17, causes damage to target tissues. To test if IL-17 was having a detrimental role in gouty onset and progression we targeted this cytokine, using a neutralizing antibody strategy, in an experimental model of gout. Joint inflammation was induced in CD-1 mice by the intra-articular (i.a.) administration of MSU crystals (200 µg/20 µl). Animals from IL-17Ab-treated groups received 1, 3 and 10 µg (i.a.) in 20 µl of neutralizing antibody after MSU crystals administration. Thereafter, joints were scored macroscopically, and knee joint oedema determined with a caliper. Histological analysis, myeloperoxidase assay and western blots analysis for COX-2/mPGEs-1/IL-17R pathway were conducted at 18 h (peak of inflammation) to evaluate leukocytes infiltration and activation, followed by the analysis, in situ, of pro/anti-inflammatory cytokines and chemokines. Flow cytometry was also used to evaluate the modulation of infiltrated inflammatory monocytes and systemic Th17 and Treg profile. Treatment with IL-17Ab revealed a dose-dependent reduction of joint inflammation scores with maximal inhibition at 10 µg. The neutralizing antibody was also able to significantly reduce leukocytes infiltration and MPO activity as well the expression of JE, IL-1α, IL-1ß, IL-16, IL-17, C5a, BLC and, with a less extent IP-10, Rantes, KC, TIMP-1, SDF-1 and metalloproteinases in inflamed tissues. Biochemical analysis also revealed that IL-17Ab treatment modulated COX-2/mPGEs-1 pathway (and related PGE2 production) without interfering with IL-17R expression. Furthermore, flow cytometry analysis highlighted a selective modulation of infiltrating inflammatory monocytes (B220-/GR1hi-F480hi/CD115+) and circulating Th17, but not Treg, cells after IL-17Ab treatment. Collectively the results of this study report for the first time, that i.a. injection of MSU crystals stimulates in vivo production of Th17 cells and Th17-related inflammatory cyto-chemokines. In addition, we have demonstrated that the administration of a neutralizing antibody against IL-17 attenuates joint symptoms, swelling and leukocytes infiltration to the inflamed tissue, possibly providing a new strategy for the treatment of gouty inflammation and/or arthritis.


Antibodies, Neutralizing/immunology , Gout/immunology , Interleukin-17/immunology , Uric Acid , Animals , Edema/immunology , Edema/pathology , Gout/pathology , Inflammation/immunology , Inflammation/pathology , Injections, Intra-Articular , Knee Joint/immunology , Knee Joint/pathology , Male , Mice
11.
Molecules ; 24(13)2019 Jul 04.
Article En | MEDLINE | ID: mdl-31277398

The object of the study was to estimate the long-lasting effects induced by ammonium glycyrrhizinate (AG) after a single administration in mice using animal models of pain and inflammation together with biochemical and docking studies. A single intraperitoneal injection of AG was able to produce anti-inflammatory effects in zymosan-induced paw edema and peritonitis. Moreover, in several animal models of pain, such as the writhing test, the formalin test, and hyperalgesia induced by zymosan, AG administered 24 h before the tests was able to induce a strong antinociceptive effect. Molecular docking studies revealed that AG possesses higher affinity for microsomal prostaglandin E synthase type-2 compared to type-1, whereas it seems to locate better in the binding pocket of cyclooxygenase (COX)-2 compared to COX-1. These results demonstrated that AG induced anti-inflammatory and antinociceptive effects until 24-48 h after a single administration thanks to its ability to bind the COX/mPGEs pathway. Taken together, all these findings highlight the potential use of AG for clinical treatment of pain and/or inflammatory-related diseases.


Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Glycyrrhizic Acid/administration & dosage , Glycyrrhizic Acid/pharmacology , Molecular Docking Simulation , Analgesics/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Chemokines/metabolism , Edema/pathology , Formaldehyde , Glycyrrhizic Acid/chemistry , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Injections, Intraperitoneal , Male , Mice , Peritoneal Cavity/pathology , Zymosan/administration & dosage
12.
Pharmaceutics ; 11(2)2019 Feb 01.
Article En | MEDLINE | ID: mdl-30717144

Ibuprofen is one of the non-steroidal anti-inflammatory drugs (NSAIDs) widely used to treat pain conditions. NSAIDs encounter several obstacles to passing across biological membranes. To overcome these constraints, we decided to study the effects of a new pH-sensitive formulation of niosomes containing Polysorbate 20 derivatized by Glycine and loaded with ibuprofen (NioIbu) in several animal models of pain in mice. We performed two tests commonly used to study acute antinociceptive activity, namely the writhing test and the capsaicin test. Our results demonstrated that NioIbu, administered 2 h before testing, reduced nociception, whereas the free form of ibuprofen was ineffective. In a model of inflammatory pain, hyperalgesia induced by zymosan, NioIbu induced a long-lasting reduction in hyperalgesia in treated mice. In a model of neuropathic pain induced by sciatic nerve chronic constriction, NioIbu reduced both neuropathy-induced allodynia and hyperalgesia. The results obtained in our experiments suggest that pH-sensitive niosomes containing Polysorbate 20 derivatized by Glycine is an effective model for NSAIDs delivery, providing durable antinociceptive effects and reducing the incidence of side effects.

13.
ACS Med Chem Lett ; 8(4): 449-454, 2017 Apr 13.
Article En | MEDLINE | ID: mdl-28435535

d-Pen2,d-Pen5 enkephalin (DPDPE) is one of the most selective synthetic peptide agonists targeting the δ-opioid receptor. Three cyclic analogues of DPDPE containing a xylene bridge in place of disulfide bond have been synthesized and fully characterized as opioid receptors agonists. The in vitro activity was investigated showing a good affinity of 7a-c for µ- and δ-receptors. In vivo biological assays revealed that 7b is the most potent analogue with the ability to maintain high level of analgesia from 15 to 60 min following intracerebroventricular (i.c.v.) administration, whereas DPDPE was slightly active until 45 min. Compound 7b induced long lasting analgesia also after subcutaneous administration, whereas DPDPE was inactive.

14.
Ann Ist Super Sanita ; 52(2): 184-9, 2016.
Article En | MEDLINE | ID: mdl-27364392

There is much evidence to suggest that gender is an important factor in the modulation of pain. Literature data strongly suggest that men and women differ in their responses to pain: they are more variable in women than men, with increased pain sensitivity and many more painful diseases commonly reported among women. Gender differences in pharmacological therapy and non-pharmacological pain interventions have also been reported, but these effects appear to depend on the treatment type and characteristics. It is becoming very evident that gender differences in pain and its relief arise from an interaction of genetic, anatomical, physiological, neuronal, hormonal, psychological and social factors which modulate pain differently in the sexes. Experimental data indicate that both a different modulation of the endogenous opioid system and sex hormones are factors influencing pain sensitivity in males and females. This brief review will examine the literature on sex differences in experimental and clinical pain, focusing on several biological mechanisms implicated in the observed gender-related differences.


Pain Management/statistics & numerical data , Pain/epidemiology , Sex Characteristics , Sex Factors , Female , Humans , Male , Pain Threshold , Prevalence
...