Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2406748121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39178229

RESUMEN

Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive. Both in vivo and in vitro, newly recruited neutrophils into the tumor sites remained activated and highly motile for several days and developed immunosuppressive phenotypes, as indicated by increased arginase 1 (Arg1) and dcTrail-R1 expression and suppressed anticancer CD8 T cell cytotoxicity. The strong suppressive function was successfully recapitulated by incubating naive neutrophils with cancer cell culture supernatant in vitro. Cancer metabolite secretome analyses of the culture supernatant revealed that both murine and human cancers released lipid mediators to induce the differentiation of immunosuppressive neutrophils. Liquid chromatography-mass spectrometry (LC-MS) lipidomic analysis identified platelet-activation factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) as a common tumor-derived lipid mediator that induces neutrophil differentiation. Lysophosphatidylcholine acyltransferase 2 (LPCAT2), the PAF biosynthetic enzyme, is up-regulated in human pancreatic ductal adenocarcinoma (PDAC) and shows an unfavorable correlation with patient survival across multiple cancer types. Our study identifies PAF as a lipid-driven mechanism of MDSC differentiation in the TME, providing a potential target for cancer immunotherapy.


Asunto(s)
Diferenciación Celular , Células Supresoras de Origen Mieloide , Neutrófilos , Factor de Activación Plaquetaria , Microambiente Tumoral , Neutrófilos/inmunología , Neutrófilos/metabolismo , Humanos , Animales , Ratones , Microambiente Tumoral/inmunología , Factor de Activación Plaquetaria/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL
2.
PLoS One ; 19(7): e0303808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38959277

RESUMEN

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Asunto(s)
Antibacterianos , Hidróxido de Calcio , Carbono , Enterococcus faecalis , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Materiales de Obturación del Conducto Radicular , Plata , Plata/química , Plata/farmacología , Hidróxido de Calcio/química , Hidróxido de Calcio/farmacología , Animales , Ratones , Nanopartículas del Metal/química , Materiales de Obturación del Conducto Radicular/química , Materiales de Obturación del Conducto Radicular/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Células 3T3 NIH , Antibacterianos/farmacología , Antibacterianos/química , Carbono/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
Food Chem ; 460(Pt 1): 140297, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079381

RESUMEN

A facile and simple electrochemical composite sensor, CDs-Ag@Cu2O-GA, prepared from carbon dots stabilized silver nanoparticles and copper oxide, was used as an electrocatalyst and signal amplifier for the non-enzymatic detection of antibiotic traces in food products. The prepared composite demonstrated excellent stability, sensitivity, and cost-effectiveness. The sensor was constructed by modifying a glassy carbon electrode (GCE) with CDs-Ag@Cu2O-GA, and the electroanalytical response was determined for the precise determination of metronidazole (MTZ) drug traces in milk. The analytical response signified fast electron transfer and accessibility of several electroactive sites, producing an amplified response for the reduction of MTZ. The quantitative analysis by the sensor revealed a good linear range (10-110 µM), a low limit of detection (7.1 × 10-7 molL-1), and a high sensitivity (1.5 µA µM-1 cm-2). Furthermore, the sensor displayed excellent potential for practical applications, verified by the good recovery of the drug from spiked milk samples.


Asunto(s)
Carbono , Técnicas Electroquímicas , Contaminación de Alimentos , Metronidazol , Leche , Carbono/química , Metronidazol/análisis , Metronidazol/química , Leche/química , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis , Animales , Cobre/química , Cobre/análisis , Límite de Detección , Plata/química , Puntos Cuánticos/química , Nanopartículas del Metal/química , Óxidos/química , Electrodos
4.
J Vis Exp ; (207)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856221

RESUMEN

The adaptive immune response is reliant on a T cell's ability to migrate through blood, lymph, and tissue in response to pathogens and foreign bodies. T cell migration is a complex process that requires the coordination of many signal inputs from the environment and local immune cells, including chemokines, chemokine receptors, and adhesion molecules. Furthermore, T cell motility is influenced by dynamic surrounding environmental cues, which can alter activation state, transcriptional landscape, adhesion molecule expression, and more. In vivo, the complexity of these seemingly intertwined factors makes it difficult to distinguish individual signals that contribute to T cell migration. This protocol provides a string of methods from T cell isolation to computer-aided analysis to assess T cell migration in real-time under highly specific environmental conditions. These conditions may help elucidate mechanisms that regulate migration, improving our understanding of T cell kinetics and providing strong mechanistic evidence that is difficult to attain through animal experiments. A deeper understanding of the molecular interactions that impact cell migration is important to develop improved therapeutics.


Asunto(s)
Linfocitos T CD8-positivos , Movimiento Celular , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/citología , Movimiento Celular/fisiología , Movimiento Celular/inmunología , Ensayos de Migración Celular/métodos
5.
Front Immunol ; 14: 1187850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388744

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising treatment option for several hematologic cancers. However, efforts to achieve the same level of therapeutic success in solid tumors have largely failed mainly due to CAR-T cell exhaustion and poor persistence at the tumor site. Although immunosuppression mediated by augmented programmed cell death protein-1 (PD-1) expression has been proposed to cause CAR-T cell hypofunction and limited clinical efficacy, little is known about the underlying mechanisms and immunological consequences of PD-1 expression on CAR-T cells. With flow cytometry analyses and in vitro and in vivo anti-cancer T cell function assays, we found that both manufactured murine and human CAR-T cell products displayed phenotypic signs of T cell exhaustion and heterogeneous expression levels of PD-1. Unexpectedly, PD-1high CAR-T cells outperformed PD-1low CAR-T cells in multiple T cell functions both in vitro and in vivo. Despite the achievement of superior persistence at the tumor site in vivo, adoptive transfer of PD-1high CAR-T cells alone failed to control tumor growth. Instead, a PD-1 blockade combination therapy significantly delayed tumor progression in mice infused with PD-1high CAR-T cells. Therefore, our data demonstrate that robust T cell activation during the ex vivo CAR-T cell manufacturing process generates a PD-1high CAR-T cell subset with improved persistence and enhanced anti-cancer functions. However, these cells may be vulnerable to the immunosuppressive microenvironment and require combination with PD-1 inhibition to maximize therapeutic functions in solid tumors.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Animales , Ratones , Receptor de Muerte Celular Programada 1 , Neoplasias/terapia , Traslado Adoptivo , Anticuerpos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA