Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Basic Res Cardiol ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724619

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.

3.
Sci Rep ; 13(1): 6907, 2023 04 27.
Article En | MEDLINE | ID: mdl-37106099

Succinate is enhanced during initial reperfusion in blood from the coronary sinus in ST-segment elevation myocardial infarction (STEMI) patients and in pigs submitted to transient coronary occlusion. Succinate levels might have a prognostic value, as they may correlate with edema volume or myocardial infarct size. However, blood from the coronary sinus is not routinely obtained in the CathLab. As succinate might be also increased in peripheral blood, we aimed to investigate whether peripheral plasma concentrations of succinate and other metabolites obtained during coronary revascularization correlate with edema volume or infarct size in STEMI patients. Plasma samples were obtained from peripheral blood within the first 10 min of revascularization in 102 STEMI patients included in the COMBAT-MI trial (initial TIMI 1) and from 9 additional patients with restituted coronary blood flow (TIMI 2). Metabolite concentrations were analyzed by 1H-NMR. Succinate concentration averaged 0.069 ± 0.0073 mmol/L in patients with TIMI flow ≤ 1 and was significantly increased in those with TIMI 2 at admission (0.141 ± 0.058 mmol/L, p < 0.05). However, regression analysis did not detect any significant correlation between most metabolite concentrations and infarct size, extent of edema or other cardiac magnetic resonance (CMR) variables. In conclusion, spontaneous reperfusion in TIMI 2 patients associates with enhanced succinate levels in peripheral blood, suggesting that succinate release increases overtime following reperfusion. However, early plasma levels of succinate and other metabolites obtained from peripheral blood does not correlate with the degree of irreversible injury or area at risk in STEMI patients, and cannot be considered as predictors of CMR variables.Trial registration: Registered at www.clinicaltrials.gov (NCT02404376) on 31/03/2015. EudraCT number: 2015-001000-58.


Heart Failure , Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Animals , Magnetic Resonance Imaging , Myocardial Infarction/pathology , Reperfusion , Succinic Acid , Swine , Treatment Outcome
4.
Aging Cell ; 21(3): e13564, 2022 03.
Article En | MEDLINE | ID: mdl-35233924

Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.


Aging , Mitochondria, Heart , Mitochondrial Proton-Translocating ATPases , Myocytes, Cardiac , Adenosine Triphosphate/metabolism , Aging/metabolism , Aging/physiology , Animals , Calcium/metabolism , Dimerization , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Mice , Mitochondria, Heart/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Myocytes, Cardiac/metabolism
5.
JACC Basic Transl Sci ; 6(7): 567-580, 2021 Jul.
Article En | MEDLINE | ID: mdl-34368505

In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.

6.
Basic Res Cardiol ; 116(1): 4, 2021 01 25.
Article En | MEDLINE | ID: mdl-33495853

Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial. Patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention (PPCI) within 6 h of symptoms were randomized to RIC or sham procedure and exenatide or matching placebo. The primary outcome was IS measured by late gadolinium enhancement in cardiac magnetic resonance performed 3-7 days after PPCI. The secondary outcomes were myocardial salvage index, transmurality index, left ventricular ejection fraction and relative microvascular obstruction volume. A total of 378 patients were randomly allocated, and after applying exclusion criteria, 222 patients were available for analysis. There were no significant interactions between the two randomization factors on the primary or secondary outcomes. IS was similar between groups for the RIC (24 ± 11.8% in the RIC group vs 23.7 ± 10.9% in the sham group, P = 0.827) and the exenatide hypotheses (25.1 ± 11.5% in the exenatide group vs 22.5 ± 10.9% in the placebo group, P = 0.092). There were no effects with either RIC or exenatide on the secondary outcomes. Unexpected adverse events or side effects of RIC and exenatide were not observed. In conclusion, neither RIC nor exenatide, or its combination, were able to reduce IS in STEMI patients when administered as an adjunct to PPCI.


Arm/blood supply , Exenatide/therapeutic use , Incretins/therapeutic use , Ischemic Preconditioning , Myocardium/pathology , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction/therapy , Aged , Combined Modality Therapy , Double-Blind Method , Exenatide/adverse effects , Female , Humans , Incretins/adverse effects , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Percutaneous Coronary Intervention/adverse effects , Prospective Studies , Regional Blood Flow , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/physiopathology , Spain , Time Factors , Treatment Outcome , Ventricular Function, Left
7.
Thromb Res ; 186: 64-70, 2020 02.
Article En | MEDLINE | ID: mdl-31887625

OBJECTIVES: To characterize sex differences in the composition of coronary thrombus in patients with ST-segment elevation myocardial infarction (STEMI), especially in the young (age ≤ 55 years). BACKGROUND: Women have smaller coronary vessels than men and their vascular lesions can be influenced by different exposure to circulating estrogens throughout life. These factors could determine a different composition of the coronary thrombus in women with STEMI. METHODS: A prospective, multicenter study was conducted on patients with STEMI and coronary thrombus was aspirated immediately before percutaneous coronary intervention (PCI) using a suction catheter (ProntoV3® or Export®). Histopathology, immunohistochemistry and ELISA techniques were used for the quantitative determination of fibrin, p-selectin and von Willebrand factor (vWF) within thrombi. RESULTS: Thrombi were collected from 100 patients (50 men and 50 women; 13 women and 13 men of <55 years). Women presented similar baseline characteristics and pain-to-balloon elapsed time than men. Thrombi from women showed a trend to a lower concentration of fibrin than those from men [median = 1.2 ng/mg (IQR 3.5) vs median = 2.2 ng/mg (IQR 5.9), p = 0.102]. No differences were found between sexes in p-selectin and vWF concentration in thrombi. However, thrombi from young women showed lower levels of p-selectin [median = 2.2 ng/mg (IQR 4.5) vs 6.5 ng/mg (IQR 4.8), p = 0.004], fibrin [median = 1.1 ng/mg; (IQR: 3.4) vs 4.1 ng/mg (IQR 15.6), p = 0.014] and vWF [median = 3.2 ng/mg (IQR 10.6) vs 25.8 ng/mg (IQR 15.0), p = 0.003] than those from young men. CONCLUSIONS: Thrombi from young women with STEMI showed a lower content of fibrin, p-selectin and vWF than those from men.


Coronary Thrombosis , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Thrombosis , Coronary Vessels , Female , Humans , Male , Middle Aged , Prospective Studies , Treatment Outcome
8.
Sci Rep ; 9(1): 6395, 2019 Apr 17.
Article En | MEDLINE | ID: mdl-30996245

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Circulation ; 139(7): 949-964, 2019 02 12.
Article En | MEDLINE | ID: mdl-30586718

BACKGROUND: Senescent cardiomyocytes exhibit a mismatch between energy demand and supply that facilitates their transition toward failing cells. Altered calcium transfer from sarcoplasmic reticulum (SR) to mitochondria has been causally linked to the pathophysiology of aging and heart failure. METHODS: Because advanced glycation-end products accumulate throughout life, we investigated whether intracellular glycation occurs in aged cardiomyocytes and its impact on SR and mitochondria. RESULTS: Quantitative proteomics, Western blot and immunofluorescence demonstrated a significant increase in advanced glycation-end product-modified proteins in the myocardium of old mice (≥20months) compared with young ones (4-6months). Glyoxalase-1 activity (responsible for detoxification of dicarbonyl intermediates) and its cofactor glutathione were decreased in aged hearts. Immunolabeling and proximity ligation assay identified the ryanodine receptor (RyR2) in the SR as prominent target of glycation in aged mice, and the sites of glycation were characterized by quantitative mass spectrometry. RyR2 glycation was associated with more pronounced calcium leak, determined by confocal microscopy in cardiomyocytes and SR vesicles. Interfibrillar mitochondria-directly exposed to SR calcium release-from aged mice had increased calcium content compared with those from young ones. Higher levels of advanced glycation-end products and reduced glyoxalase-1 activity and glutathione were also present in atrial appendages from surgical patients ≥75 years as compared with the younger ones. Elderly patients also exhibited RyR2 hyperglycation and increased mitochondrial calcium content that was associated with reduced myocardial aerobic capacity (mitochondrial O2 consumption/g) attributable to less respiring mitochondria. In contracting HL-1 cardiomyocytes, pharmacological glyoxalase-1 inhibition recapitulated RyR2 glycation and defective SR-mitochondria calcium exchange of aging. CONCLUSIONS: Mitochondria from aging hearts develop calcium overload secondary to SR calcium leak. Glycative damage of RyR2, favored by deficient dicarbonyl detoxification capacity, contributes to calcium leak and mitochondrial damage in the senescent myocardium.


Calcium/metabolism , Cellular Senescence , Glycation End Products, Advanced/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Age Factors , Aged , Aged, 80 and over , Aging/metabolism , Aging/pathology , Animals , Calcium Signaling , Cell Line , Female , Glycosylation , Humans , Lactoylglutathione Lyase/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Mitochondria, Heart/pathology , Myocytes, Cardiac/pathology , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/pathology
10.
Sci Rep ; 8(1): 2442, 2018 02 05.
Article En | MEDLINE | ID: mdl-29402957

Inhibition of succinate dehydrogenase (SDH) with malonate during reperfusion reduces infarct size in isolated mice hearts submitted to global ischemia. However, malonate has toxic effects that preclude its systemic administration in animals. Here we investigated the effect of intracoronary malonate on infarct size in pigs submitted to transient coronary occlusion. Under baseline conditions, 50 mmol/L of intracoronary disodium malonate, but not lower concentrations, transiently reduced systolic segment shortening in the region perfused by the left anterior descending coronary artery (LAD) in open-chest pigs. To assess the effects of SDH inhibition on reperfusion injury, saline or malonate 10 mmol/L were selectively infused into the area at risk in 38 animals submitted to ischemia-reperfusion. Malonate improved systolic shortening in the area at risk two hours after 15 min of ischemia (0.18 ± 0.07 vs 0.00 ± 0.01 a.u., p = 0.025, n = 3). In animals submitted to 40 min of ischemia, malonate reduced reactive oxygen species production (MitoSOX staining) during initial reperfusion and limited infarct size (36.46 ± 5.35 vs 59.62 ± 4.00%, p = 0.002, n = 11), without modifying reperfusion arrhythmias. In conclusion, inhibition of SDH with intracoronary malonate during early reperfusion limits reperfusion injury and infarct size in pigs submitted to transient coronary occlusion without modifying reperfusion arrhythmias or contractile function in distant myocardium.


Cardiotonic Agents/pharmacology , Hemodynamics/drug effects , Malonates/pharmacology , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Succinate Dehydrogenase/antagonists & inhibitors , Animals , Arterial Pressure/drug effects , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Heart Rate/drug effects , Injections, Intravenous , Myocardial Infarction/enzymology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Succinate Dehydrogenase/metabolism , Swine
11.
J Nutr Biochem ; 40: 187-193, 2017 02.
Article En | MEDLINE | ID: mdl-27915162

After an acute myocardial infarction, obese patients generally have a better prognosis than their leaner counterparts, known as the "obesity paradox". In addition, female sex is associated with a lower risk of cardiac ischemic events and smaller infarct size compared to males. The objective of the present work was to study the metabolic phenotype and mitochondrial function associated to female sex and short-term high-fat diet. 1H NMR spectra of mice heart extracts were analysed by mRMR variable selection and linear discriminant analysis was used to evaluate metabolic changes. In separate experiments, O2 consumption and H2O2 production were measured from isolated mitochondria as well as serum oxidation susceptibility. Fingerprinting showed that male hearts contained more myo-inositol, taurine and glutamate than female hearts. HFD reduced the levels of creatine, taurine citrate and acetate. Profiling showed increased alanine and fumarate in HFD suggesting altered glycolitic and Krebs cycle pathways. Female mice contained less glucose than males. Female sex nor HFD altered mitochondria oxygen consumption but both conditions reduced the amount of H2O2 produced in an additive manner. Serum of females had lower oxidation susceptibility than serum from males but there were no differences associated with HFD. In conclusion, female sex and short-term HFD have an effect on the myocardial metabolic pattern and reduce the amount of H2O2 produced by mitochondria in an additive manner suggesting different mechanisms of action. This could explain, at least in part, the protection afforded by female sex and the "obesity paradox".


Diet, High-Fat/adverse effects , Myocardium/metabolism , Oxidative Stress , Animals , Body Weight , Female , Hydrogen Peroxide/metabolism , Lipids/blood , Magnetic Resonance Spectroscopy , Male , Metabolomics/methods , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocardium/pathology , Oxygen Consumption , Sex Factors
12.
J Cell Mol Med ; 20(5): 794-803, 2016 May.
Article En | MEDLINE | ID: mdl-26915330

Connexin 43 (Cx43), the gap junction protein involved in cell-to-cell coupling in the heart, is also present in the subsarcolemmal fraction of cardiomyocyte mitochondria. It has been described to regulate mitochondrial potassium influx and respiration and to be important for ischaemic preconditioning protection, although the molecular effectors involved are not fully characterized. In this study, we looked for potential partners of mitochondrial Cx43 in an attempt to identify new molecular pathways for cardioprotection. Mass spectrometry analysis of native immunoprecipitated mitochondrial extracts showed that Cx43 interacts with several proteins related with mitochondrial function and metabolism. Among them, we selected for further analysis only those present in the subsarcolemmal mitochondrial fraction and known to be related with the respiratory chain. Apoptosis-inducing factor (AIF) and the beta-subunit of the electron-transfer protein (ETFB), two proteins unrelated to date with Cx43, fulfilled these conditions, and their interaction with Cx43 was proven by direct and reverse co-immunoprecipitation. Furthermore, a previously unknown molecular interaction between AIF and ETFB was established, and protein content and sub-cellular localization appeared to be independent from the presence of Cx43. Our results identify new protein-protein interactions between AIF-Cx43, ETFB-Cx43 and AIF-ETFB as possible players in the regulation of the mitochondrial redox state.


Apoptosis Inducing Factor/metabolism , Connexin 43/metabolism , Electron-Transferring Flavoproteins/metabolism , Mitochondria, Heart/metabolism , Protein Subunits/metabolism , Animals , Apoptosis Inducing Factor/genetics , Connexin 43/genetics , Electron-Transferring Flavoproteins/genetics , Female , Gene Expression Regulation , Immunoprecipitation , Male , Mice , Mice, Transgenic , Mitochondria, Heart/genetics , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Protein Binding , Protein Interaction Mapping , Protein Subunits/genetics , Signal Transduction
13.
Cardiovasc Res ; 109(3): 374-84, 2016 Mar 01.
Article En | MEDLINE | ID: mdl-26705364

AIMS: Previous studies demonstrated that pre-treatment with malonate, a reversible inhibitor of succinate dehydrogenase, given before ischaemia, reduces infarct size. However, it is unknown whether administration of malonate may reduce reperfusion injury. METHODS AND RESULTS: Isolated mice hearts were treated, under normoxic conditions, with increasing concentrations of disodium malonate (0.03-30 mmol/L, n = 4). Malonate induced a concentration-dependent decrease in left ventricular developed pressure (LVdevP) (EC50 = 8.05 ± 2.11 mmol/L). In isolated hearts submitted to global ischaemia (35 min) followed by reperfusion (60 min), malonate 3 mmol/L given only during the first 15 min of reperfusion reduced lactate dehydrogenase release (125.41 ± 16.82 vs. 189.20 ± 13.74 U/g dry tissue/15 min in controls, P = 0.015) and infarct size (24.57 ± 2.32 vs. 39.84 ± 2.78%, P = 0.001, n = 7-8 per group) and improved recovery of LVdevP (20.06 ± 3.82 vs 7.76 ± 2.53% of baseline LVdevP, P = 0.017). (1)H NMR spectroscopy demonstrated marked changes in the metabolic profile of malonate-treated hearts, including increased accumulation of succinate. Furthermore, malonate reduced reactive oxygen species (ROS) production, as measured by MitoSOX staining in myocardial samples obtained after 5 min of reperfusion and in mitochondrial preparations from these samples, preserved mitochondrial respiration, and reduced mitochondrial permeabilization, assessed by calcein retention. Treatment with malonate did not result in activation of RISK or SAFE signalling pathways in tissue extracts obtained 5 min after reperfusion. CONCLUSION: Succinate dehydrogenase inhibition with malonate at the onset of reperfusion reduces infarct size in isolated mice hearts through reduction in ROS production and mitochondrial permeability transition pore opening.


Malonates/pharmacology , Mitochondria, Heart/drug effects , Myocardial Reperfusion Injury/prevention & control , Succinate Dehydrogenase/antagonists & inhibitors , Animals , Cardiotonic Agents/pharmacology , L-Lactate Dehydrogenase/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Reperfusion Injury/metabolism
14.
Cardiovasc Res ; 107(2): 246-54, 2015 Jul 15.
Article En | MEDLINE | ID: mdl-26045476

AIMS: Remote ischaemic conditioning (RIC) has been shown to reduce myocardial infarct size in patients. Our objective was to investigate whether the combination of RIC with either exenatide or glucose-insulin-potassium (GIK) is more effective than RIC alone. METHODS AND RESULTS: Pigs were submitted to 40 min of coronary occlusion followed by reperfusion, and received (i) no treatment, (ii) one of the following treatments: RIC (5 min ischemia/5 min reperfusion × 4), GIK, or exenatide (at doses reducing infarct size in clinical trials), or (iii) a combination of two of these treatments (RIC + GIK or RIC + exenatide). After 5 min of reperfusion (n = 4/group), prominent phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) was observed, both in control and reperfused myocardium, in animals receiving GIK, and mitochondria from these hearts showed reduced ADP-stimulated respiration. (1)H NMR-based metabonomics disclosed a shift towards increased glycolysis in GIK and exenatide groups. In contrast, oxidative stress (myocardial nitrotyrosine levels) and eNOS uncoupling were significantly reduced only by RIC. In additional experiments (n = 7-10/group), ANOVA demonstrated a significant effect of the number of treatments after 2 h of reperfusion on infarct size (triphenyltetrazolium, % of the area at risk; 59.21 ± 3.34, 36.64 ± 3.03, and 21.04 ± 2.38% for none, one, and two treatments, respectively), and significant differences between one and two treatments (P = 0.004) but not among individual treatments or between RIC + GIK and RIC + exenatide. CONCLUSIONS: GIK and exenatide activate cardioprotective pathways different from those of RIC, and have additive effects with RIC on infarct size reduction in pigs.


Insulin/pharmacology , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Peptides/pharmacology , Venoms/pharmacology , Aging , Animals , Exenatide , Glucose/metabolism , Ischemia/drug therapy , Myocardial Infarction/metabolism , Myocardial Reperfusion/methods , Myocardial Reperfusion Injury/metabolism , Potassium/metabolism , Swine
15.
Thromb Haemost ; 113(3): 441-51, 2015 Mar.
Article En | MEDLINE | ID: mdl-25631625

Aging is a major determinant of the incidence and severity of ischaemic heart disease. Preclinical information suggests the existence of intrinsic cellular alterations that contribute to ischaemic susceptibility in senescent myocardium, by mechanisms not well established. We investigated the role of altered mitochondrial function in the adverse effect of aging. Isolated perfused hearts from old mice (> 20 months) displayed increased ischaemia-reperfusion injury as compared to hearts from adult mice (6 months) despite delayed onset of ischaemic rigor contracture. In cardiomyocytes from aging hearts there was a more rapid decline of mitochondrial membrane potential (Δψm) as compared to young ones, but ischaemic rigor shortening was also delayed. Transient recovery of Δψm observed during ischaemia, secondary to the reversal of mitochondrial FoF1 ATP synthase to ATPase mode, was markedly reduced in aging cardiomyocytes. Proteomic analysis demonstrated increased oxidation of different subunits of ATP synthase. Altered bionergetics in aging cells was associated with reduced mitochondrial calcium uptake and more severe cytosolic calcium overload during ischaemia-reperfusion. Despite attenuated ROS burst and mitochondrial calcium overload, mitochondrial permeability transition pore (mPTP) opening and cell death was increased in reperfused aged cells. In vitro studies demonstrated a significantly reduced calcium retention capacity in interfibrillar mitochondria from aging hearts. Our results identify altered FoF1 ATP synthase and increased sensitivity of mitochondria to undergo mPTP opening as important determinants of the reduced tolerance to ischaemia-reperfusion in aging hearts. Because ATP synthase has been proposed to conform mPTP, it is tempting to hypothesise that oxidation of ATP synthase underlie both phenomena.


Mitochondria, Heart/enzymology , Mitochondrial Membrane Transport Proteins/metabolism , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Proton-Translocating ATPases/metabolism , Age Factors , Animals , Calcium/metabolism , Cell Death , Energy Metabolism , Isolated Heart Preparation , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mitochondria, Heart/pathology , Mitochondrial Permeability Transition Pore , Myocardial Contraction , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Sarcolemma/metabolism , Time Factors
16.
J Mol Cell Cardiol ; 68: 79-88, 2014 Mar.
Article En | MEDLINE | ID: mdl-24434643

Mitochondria play a central role in the protection conferred by ischemic preconditioning (IP) by not fully elucidated mechanisms. We investigated whether IP protects mitochondria against ischemia-reperfusion (IR) injury through mechanisms independent of cytosolic signaling. In isolated rat hearts, sublethal IR increased superoxide production and reduced complex-I- and II-mediated respiration in subsarcolemmal (SS), but not interfibrillar (IF) mitochondria. This effect of IR on mitochondrial respiration was significantly attenuated by IP. Similar results were obtained in isolated cardiac mitochondria subjected to in vitro IR. The reduction in SS mitochondrial respiration in the heart and in vitro model was paralleled by an increase in oxidized cysteine residues, which was also prevented by IP. IP was also protective in mitochondria submitted to lethal IR. The protective effect of IP against respiratory failure was unaffected by inhibition of mitochondrial KATP channels or mitochondrial permeability transition. However, IP protection was lost in mitochondria from genetically-modified animals in which connexin-43, a protein present in SS but not IF mitochondria, was replaced by connexin-32. Our results demonstrate the existence of a protective mitochondrial mechanism or "mitochondrial preconditioning" independent of cytosol that confers protection against IR-induced respiratory failure and oxidative damage, and requires connexin-43.


Ischemic Preconditioning , Mitochondria, Heart/physiology , Myocardial Reperfusion Injury/prevention & control , Animals , Cell Respiration , Connexin 43/metabolism , Coronary Circulation , Cytosol/metabolism , In Vitro Techniques , Ion Channel Gating , Male , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/pathology , Oxidation-Reduction , Oxidative Phosphorylation , Oxidative Stress , Peroxynitrous Acid/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Superoxides/metabolism
17.
Age (Dordr) ; 36(2): 933-43, 2014 Apr.
Article En | MEDLINE | ID: mdl-24163049

The rs1333049 (G/C) polymorphism located on chromosome 9p21.3 is a candidate to influence extreme longevity owing to its association with age-related diseases, notably coronary artery disease (CAD). We compared allele/genotype distributions of rs1333049 in cases (centenarians) and controls (younger adults, without (healthy) or with CAD) in two independent cohorts: Spanish (centenarians: n = 152, 128 women, 100-111 years; healthy controls: n = 343, 212 women, age <50 years; CAD controls: n = 98, 32 women, age ≤65 years) and Japanese (centenarians: n = 742, 623 women, 100-115 years; healthy controls: n = 920, 511 women, < 60 years; CAD controls: n = 395, 45 women, age ≤65 years). The frequency of the "risk" C-allele tended to be lower in Spanish centenarians (47.0 %) than in their healthy (52.9 %, P = 0.088) or CAD controls (55.1 %, P = 0.078), and significant differences were found in genotype distributions (P = 0.034 and P = 0.045), with a higher frequency of the GG genotype in cases than in both healthy and CAD controls as well as a lower proportion of the CG genotype compared with healthy controls. In the Japanese cohort, the main finding was that the frequency of the C-allele did not differ between centenarians (46.4 %) and healthy controls (47.3 %, P = 0.602), but it was significantly lower in the former than in CAD controls (57.2 %, P < 0.001). Although more research is needed, the present and recent pioneer findings (Rejuvenation Res 13:23-26, 2010) suggest that the rs1333049 polymorphism could be among the genetic contributors to exceptional longevity in Southern European populations, albeit this association does not exist in the healthy (CAD-free) Japanese population.


Chromosomes, Human, Pair 9/genetics , Coronary Disease/genetics , DNA/genetics , Genetic Predisposition to Disease , Longevity/genetics , Polymorphism, Genetic , Aged , Aged, 80 and over , Alleles , Coronary Disease/epidemiology , Female , Follow-Up Studies , Gene Frequency , Genotype , Humans , Japan/epidemiology , Male , Middle Aged , Morbidity/trends , Polymerase Chain Reaction , Retrospective Studies , Spain/epidemiology
18.
Basic Res Cardiol ; 108(3): 351, 2013 May.
Article En | MEDLINE | ID: mdl-23595215

Connexin 43 (Cx43) deficiency increases myocardial tolerance to ischemia-reperfusion injury and abolishes preconditioning protection. It is not known whether modifications in baseline signaling through protective RISK or SAFE pathways or in response to preconditioning may contribute to these effects. To answer this question we used Cx43(Cre-ER(T)/fl) mice, in which Cx43 expression is abolished after 4-hydroxytamoxifen (4-OHT) administration. Isolated hearts from Cx43(Cre-ER(T)/fl) mice, or from Cx43(fl/fl) controls, treated with vehicle or 4-OHT, were submitted to global ischemia (40 min) and reperfusion. Cx43 deficiency was associated with reduced infarct size after ischemia-reperfusion (11.17 ± 3.25 % vs. 65.04 ± 3.79, 59.31 ± 5.36 and 65.40 ± 4.91, in Cx43(fl/fl) animals treated with vehicle, Cx43(fl/fl) mice treated with 4-OHT, and Cx43(Cre-ER(T)/fl) mice treated with vehicle, respectively, n = 8-9, p < 0.001). However, the ratio phosphorylated/total protein expression for Akt, ERK-1/2, GSK3ß and STAT3 was not increased in normoxic samples from animals lacking Cx43. Instead, a reduction in the phosphorylation state of GSK3ß was observed in Cx43-deficient mice (ratio: 0.15 ± 0.02 vs. 0.56 ± 0.11, 0.77 ± 0.15, and 0.46 ± 0.14, respectively, n = 5-6, p < 0.01). Furthermore, ischemic preconditioning (IPC, 4 cycles of 3.5 min of ischemia and 5 min of reperfusion) increased phosphorylation of ERK-1/2, GSK3ß, and STAT3 in all hearts without differences between groups (n = 5-6, p < 0.05), although Cx43 deficient mice were not protected by either IPC or pharmacological preconditioning with diazoxide. Our data demonstrate that modification of RISK and SAFE signaling does not contribute to the role of Cx43 in the increased tolerance to myocardial ischemia-reperfusion injury and in preconditioning protection.


Connexin 43/deficiency , Ischemic Preconditioning, Myocardial , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/enzymology , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Cell Death , Connexin 43/genetics , Disease Models, Animal , Energy Metabolism , Enzyme Activation , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Magnetic Resonance Spectroscopy , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Phosphocreatine/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Time Factors , Ventricular Function, Left , Ventricular Pressure
19.
Mol Cell Proteomics ; 11(9): 800-13, 2012 Sep.
Article En | MEDLINE | ID: mdl-22647871

Nitroxidative stress in cells occurs mainly through the action of reactive nitrogen and oxygen species (RNOS) on protein thiol groups. Reactive nitrogen and oxygen species-mediated protein modifications are associated with pathophysiological states, but can also convey physiological signals. Identification of Cys residues that are modified by oxidative stimuli still poses technical challenges and these changes have never been statistically analyzed from a proteome-wide perspective. Here we show that GELSILOX, a method that combines a robust proteomics protocol with a new computational approach that analyzes variance at the peptide level, allows a simultaneous analysis of dynamic alterations in the redox state of Cys sites and of protein abundance. GELSILOX permits the characterization of the major endothelial redox targets of hydrogen peroxide in endothelial cells and reveals that hypoxia induces a significant increase in the status of oxidized thiols. GELSILOX also detected thiols that are redox-modified by ischemia-reperfusion in heart mitochondria and demonstrated that these alterations are abolished in ischemia-preconditioned animals.


Oxidative Stress , Proteins/metabolism , Proteome/analysis , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Endothelial Cells/metabolism , Humans , Isotope Labeling , Male , Mitochondria, Heart/metabolism , Myocardium/metabolism , Myocardium/pathology , Oxidation-Reduction , Proteomics , Rats , Rats, Sprague-Dawley , Reactive Nitrogen Species/analysis , Reactive Oxygen Species/analysis , Reperfusion Injury/metabolism
20.
J Cell Mol Med ; 16(8): 1649-55, 2012 Aug.
Article En | MEDLINE | ID: mdl-22212640

Connexin 43 (Cx43) is present at the sarcolemma and the inner membrane of cardiomyocyte subsarcolemmal mitochondria (SSM). Lack or inhibition of mitochondrial Cx43 is associated with reduced mitochondrial potassium influx, which might affect mitochondrial respiration. Therefore, we analysed the importance of mitochondrial Cx43 for oxygen consumption. Acute inhibition of Cx43 in rat left ventricular (LV) SSM by 18α glycyrrhetinic acid (GA) or Cx43 mimetic peptides (Cx43-MP) reduced ADP-stimulated complex I respiration and ATP generation. Chronic reduction of Cx43 in conditional knockout mice (Cx43(Cre-ER(T)/fl) + 4-OHT, 5-10% of Cx43 protein compared with control Cx43(fl/fl) mitochondria) reduced ADP-stimulated complex I respiration of LV SSM to 47.8 ± 2.4 nmol O(2)/min.*mg protein (n = 8) from 61.9 ± 7.4 nmol O(2)/min.*mg protein in Cx43(fl/fl) mitochondria (n = 10, P < 0.05), while complex II respiration remained unchanged. The LV complex I activities (% of citrate synthase activity) of Cx43(Cre-ER(T)/fl) +4-OHT mice (16.1 ± 0.9%, n = 9) were lower than in Cx43(fl/fl) mice (19.8 ± 1.3%, n = 8, P < 0.05); complex II activities were similar between genotypes. Supporting the importance of Cx43 for respiration, in Cx43-overexpressing HL-1 cardiomyocytes complex I respiration was increased, whereas complex II respiration remained unaffected. Taken together, mitochondrial Cx43 is required for optimal complex I activity and respiration and thus mitochondrial ATP-production.


Connexin 43/metabolism , Electron Transport Complex I/metabolism , Mitochondria, Heart/metabolism , Oxygen Consumption , Adenosine Triphosphate/biosynthesis , Animals , Connexin 43/antagonists & inhibitors , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Mice , Mitochondria, Heart/drug effects , Oxygen Consumption/drug effects , Peptides/pharmacology , Rats , Rats, Inbred Lew , Sarcolemma/drug effects , Sarcolemma/metabolism
...