Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
IEEE Open J Eng Med Biol ; 5: 59-65, 2024.
Article En | MEDLINE | ID: mdl-38445242

Emerging therapies in bioelectronic medicine highlight the need for deeper understanding of electrode material performance in the context of tissue stimulation. Electrochemical properties are characterized on the benchtop, facilitating standardization across experiments. On-nerve electrochemistry differs from benchtop characterization and the relationship between electrochemical performance and nerve activation thresholds are not commonly established. This relationship is important in understanding differences between electrical stimulation requirements and electrode performance. We report functional electrochemistry as a follow-up to benchtop testing, describing a novel experimental approach for evaluating on-nerve electrochemical performance in the context of nerve activation. An ex-vivo rat sciatic nerve preparation was developed to quantify activation thresholds of fiber subtypes and electrode material charge injection limits for platinum iridium, iridium oxide, titanium nitride and PEDOT. Finally, we address experimental complexities arising in these studies, and demonstrate statistical solutions that support rigorous material performance comparisons for decision making in neural interface development.

2.
Front Endocrinol (Lausanne) ; 14: 1285269, 2023.
Article En | MEDLINE | ID: mdl-37941906

Introduction: Polycystic ovary syndrome (PCOS) seems to be associated with increased ovarian sympathetic nerve activity and in rodent models of PCOS reducing the sympathetic drive to the ovary, through denervation or neuromodulation, improves ovulation rate. We hypothesised that sympathetic nerves work with gonadotropins to promote development and survival of small antral follicles to develop a polycystic ovary phenotype. Methods: Using a clinically realistic ovine model we showed a rich sympathetic innervation to the normal ovary and reinnervation after ovarian transplantation. Using needlepoint diathermy to the nerve plexus in the ovarian vascular pedicle we were able to denervate the ovary resulting in reduced intraovarian noradrenaline and tyrosine hydroxylase immunostained sympathetic nerves. We developed an acute polycystic ovary (PCO) model using gonadotrophin releasing hormone (GnRH) agonist followed infusion of follicle stimulating hormone (FSH) with increased pulsatile luteinising hormone (LH). This resulted in increased numbers of smaller antral follicles in the ovary when compared to FSH infusion suggesting a polycystic ovary. Results: Denervation had no effect of the survival or numbers of follicles in the acute PCO model and did not impact on ovulation, follicular and luteal hormone profiles in a normal cycle. Discussion: Although the ovary is richly inervated we did not find evidence for a role of sympathetic nerves in ovarian function or small follicle growth and survival.


Polycystic Ovary Syndrome , Female , Humans , Sheep , Animals , Polycystic Ovary Syndrome/complications , Follicle Stimulating Hormone , Gonadotropins , Sheep, Domestic , Denervation
3.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article En | MEDLINE | ID: mdl-33972441

Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.


Immune System/innervation , Immunomodulation/drug effects , Spleen/immunology , Sympathetic Nervous System/immunology , Vagus Nerve/immunology , Animals , Female , Gene Expression , Humans , Immune System/drug effects , Inflammation , Interleukin-6/genetics , Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Mice , Microcirculation/drug effects , Microcirculation/genetics , Microcirculation/immunology , Norepinephrine/pharmacology , Rats , Species Specificity , Spleen/drug effects , Spleen/innervation , Spleen/pathology , Swine , Sympathetic Nervous System/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vagus Nerve/drug effects , Vagus Nerve Stimulation/methods
4.
Commun Biol ; 3(1): 577, 2020 10 16.
Article En | MEDLINE | ID: mdl-33067560

Neuromodulation is a new therapeutic pathway to treat inflammatory conditions by modulating the electrical signalling pattern of the autonomic connections to the spleen. However, targeting this sub-division of the nervous system presents specific challenges in translating nerve stimulation parameters. Firstly, autonomic nerves are typically embedded non-uniformly among visceral and connective tissues with complex interfacing requirements. Secondly, these nerves contain axons with populations of varying phenotypes leading to complexities for axon engagement and activation. Thirdly, clinical translational of methodologies attained using preclinical animal models are limited due to heterogeneity of the intra- and inter-species comparative anatomy and physiology. Here we demonstrate how this can be accomplished by the use of in silico modelling of target anatomy, and validation of these estimations through ex vivo human tissue electrophysiology studies. Neuroelectrical models are developed to address the challenges in translation of parameters, which provides strong input criteria for device design and dose selection prior to a first-in-human trial.


Electric Stimulation , Spleen/innervation , Animals , Electric Stimulation/methods , Electric Stimulation Therapy/methods , Electrophysiological Phenomena , Humans , Spleen/anatomy & histology , Spleen/blood supply , Spleen/cytology , Swine
5.
Sci Rep ; 9(1): 18136, 2019 12 02.
Article En | MEDLINE | ID: mdl-31792232

Recent research supports that over-activation of the carotid body plays a key role in metabolic diseases like type 2 diabetes. Supressing carotid body signalling through carotid sinus nerve (CSN) modulation may offer a therapeutic approach for treating such diseases. Here we anatomically and histologically characterised the CSN in the farm pig as a recommended path to translational medicine. We developed an acute in vivo porcine model to assess the application of kilohertz frequency alternating current (KHFAC) to the CSN of evoked chemo-afferent CSN responses. Our results demonstrate the feasibility of this approach in an acute setting, as KHFAC modulation was able to successfully, yet variably, block evoked chemo-afferent responses. The observed variability in blocking response is believed to reflect the complex and diverse anatomy of the porcine CSN, which closely resembles human anatomy, as well as the need for optimisation of electrodes and parameters for a human-sized nerve. Overall, these results demonstrate the feasibility of neuromodulation of the CSN in an anesthetised large animal model, and represent the first steps in driving KHFAC modulation towards clinical translation. Chronic recovery disease models will be required to assess safety and efficacy of this potential therapeutic modality for application in diabetes treatment.


Carotid Sinus/innervation , Animals , Carotid Body/drug effects , Carotid Body/physiology , Carotid Sinus/anatomy & histology , Carotid Sinus/drug effects , Electrodes, Implanted , Female , Humans , Neural Conduction , Respiration , Sodium Cyanide/pharmacology , Swine
6.
PLoS One ; 10(8): e0133251, 2015.
Article En | MEDLINE | ID: mdl-26244986

Mice are of paramount importance in biomedical research and their vocalizations are a subject of interest for researchers across a wide range of health-related disciplines due to their increasingly important value as a phenotyping tool in models of neural, speech and language disorders. However, the mechanisms underlying the auditory processing of vocalizations in mice are not well understood. The mouse audiogram shows a peak in sensitivity at frequencies between 15-25 kHz, but weaker sensitivity for the higher ultrasonic frequencies at which they typically vocalize. To investigate the auditory processing of vocalizations in mice, we measured evoked potential, single-unit, and multi-unit responses to tones and vocalizations at three different stages along the auditory pathway: the auditory nerve and the cochlear nucleus in the periphery, and the inferior colliculus in the midbrain. Auditory brainstem response measurements suggested stronger responses in the midbrain relative to the periphery for frequencies higher than 32 kHz. This result was confirmed by single- and multi-unit recordings showing that high ultrasonic frequency tones and vocalizations elicited responses from only a small fraction of cells in the periphery, while a much larger fraction of cells responded in the inferior colliculus. These results suggest that the processing of communication calls in mice is supported by a specialization of the auditory system for high frequencies that emerges at central stations of the auditory pathway.


Auditory Pathways/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Inferior Colliculi/physiology , Vocalization, Animal/physiology , Animals , Cochlear Nerve/physiology , Cochlear Nucleus/physiology , Mice , Ultrasonic Waves
7.
Front Neurol ; 6: 77, 2015.
Article En | MEDLINE | ID: mdl-25904892

High dose sodium salicylate causes moderate, reversible hearing loss and tinnitus. Salicylate-induced hearing loss is believed to arise from a reduction in the electromotile response of outer hair cells (OHCs) and/or reduction of KCNQ4 potassium currents in OHCs, which decreases the driving force for the transduction current. Therefore, enhancing OHC potassium currents could potentially prevent salicylate-induced temporary hearing loss. In this study, we tested whether opening voltage-gated potassium channels using ICA-105665, a novel small molecule that opens KCNQ2/3 and KCNQ3/5 channels, can reduce salicylate-induced hearing loss. We found that systemic application of ICA-105665 at 10 mg/kg prevented the salicylate-induced amplitude reduction and threshold shift in the compound action potentials recorded at the round window of the cochlea. ICA-105665 also prevented the salicylate-induced reduction of distortion-product otoacoustic emission. These results suggest that ICA-105665 partially compensates for salicylate-induced cochlear hearing loss by enhancing KCNQ2/3 and KCNQ3/5 potassium currents and the motility of OHCs.

8.
PLoS One ; 9(8): e106108, 2014.
Article En | MEDLINE | ID: mdl-25157947

Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain.


Analgesics, Opioid/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthralgia/drug therapy , Knee Joint/pathology , Naproxen/therapeutic use , Oxycodone/therapeutic use , Action Potentials , Analgesics, Opioid/pharmacokinetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Drug Evaluation, Preclinical , Male , Naproxen/pharmacokinetics , Oxycodone/pharmacokinetics , Pain Perception , Rats, Sprague-Dawley , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/physiopathology
9.
PLoS One ; 9(7): e101630, 2014.
Article En | MEDLINE | ID: mdl-24992362

Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.


Auditory Pathways/physiology , Auditory Perception/physiology , Brain Stem/physiology , Neuronal Plasticity/physiology , Vocalization, Animal/physiology , Animals , Female , Mice , Pregnancy
10.
Hippocampus ; 22(9): 1923-40, 2012 Sep.
Article En | MEDLINE | ID: mdl-22674542

Age-related cognitive decline presents serious lifestyle challenges, and anatomical changes to the hippocampus are often implicated in clinical conditions later in life. However, relatively little is known about how hippocampal physiology is altered in the transition to middle-age, when early detection may offer the best opportunity for successful treatment. High-yield extracellular recording is a powerful tool for understanding brain function in freely moving animals at single-cell resolution and with millisecond precision. We used this technique to characterize changes to hippocampal physiology associated with maturation in 35-week-old rats. Combining a series of behavioral tasks with recordings of large numbers of neurons, local field potentials (LFP), and network patterns of activation, we were able to generate a comprehensive picture based on more than 25 different assays for each subject. Notable changes associated with aging included increased firing rates in interneurons, reduced LFP power but increased frequency in the 4-12 Hz theta band, and impairment in hippocampal pattern-separation for different environments. General properties of pyramidal cell firing and spatial map integrity were preserved. There was no impairment in theta phase-precession, experience-dependent place field expansion, or sleep reactivation of waking network patterns. There were however changes in foraging strategy and behavioral responses to the introduction of a novel environment. Taken together the results reveal a diverse pattern of changes which are of increasing relevance in an aging population. They also highlight areas where high-yield electrophysiological assays can be used to provide the sensitivity and throughput required for pre-clinical drug-discovery programs.


Aging/physiology , Hippocampus/physiology , Aging/psychology , Animals , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , Cognition/physiology , Electrophysiological Phenomena , Interneurons/physiology , Male , Models, Animal , Pyramidal Cells/physiology , Rats , Theta Rhythm/physiology
11.
Hear Res ; 252(1-2): 21-8, 2009 Jun.
Article En | MEDLINE | ID: mdl-19401225

There is a growing consensus that the auditory system is dynamic in its representation of behaviorally relevant sounds. The auditory cortex in particular seems to be an important locus for plasticity that may reflect the memory of such sounds, or functionally improve their processing. The mechanisms that underlie these changes may be either intrinsic because they depend on the receiver's physiological state, or extrinsic because they arise from the context in which behavioral relevance is gained. Research in a mouse model of acoustic communication between offspring and adult females offers the opportunity to explore both of these contributions to auditory cortical plasticity in a natural context. Recent works have found that after the vocalizations of infant mice become behaviorally relevant to mothers, auditory cortical activity is significantly changed in a way that may improve their processing. Here we consider the hypothesis that maternal hormones (intrinsic factor) and sensory experience (extrinsic factor) contribute together to drive these changes, focusing specifically on the evidence that well-known experience-dependent mechanisms of cortical plasticity can be modulated by hormones.


Auditory Cortex/physiology , Models, Neurological , Neuronal Plasticity/physiology , Acetylcholine/physiology , Animals , Dopamine/physiology , Estradiol/physiology , Female , Mice , Norepinephrine/physiology , Pregnancy , Progesterone/physiology , Serotonin/physiology , Vocalization, Animal/physiology
12.
Hear Res ; 252(1-2): 79-88, 2009 Jun.
Article En | MEDLINE | ID: mdl-19371774

Reproductive hormones can modulate communication-evoked behavior by acting on neural systems associated with motivation; however, recent evidence suggests that modulation occurs at the sensory processing level as well. The anuran auditory midbrain processes communication stimuli, and is sensitive to steroid hormones. Using multiunit electrophysiology, we tested whether sex and circulating testosterone influence auditory sensitivity to pure tones and to the natural vocalization in the green treefrog, Hyla cinerea. Sex did not influence audiogram best frequencies although sexes did differ in the sensitivities at those frequencies with males more sensitive in the lower frequency range. Females were more sensitive than males in response to the natural vocalization, despite showing no difference in response to pure tones at frequencies found within the advertisement call. Thresholds to frequencies outside the range of the male advertisement call were higher in females. Additionally, circulating testosterone increased neural thresholds in females in a frequency-specific manner. These results demonstrate that sex differences are limited to frequency ranges that relate to the processing of natural vocalizations, and depend on the type of stimulus. The frequency-dependent and stimulus-dependent nature of sex and testosterone influences suggests that reproductive hormones influence the filtering properties of the auditory system.


Androgens/physiology , Anura/physiology , Auditory Threshold/physiology , Acoustic Stimulation , Animals , Audiometry, Pure-Tone , Auditory Threshold/drug effects , Behavior, Animal/physiology , Female , Male , Mesencephalon/physiology , Sex Characteristics , Testosterone/pharmacology , Testosterone/physiology , Vocalization, Animal/physiology
13.
Article En | MEDLINE | ID: mdl-19184041

Female behavioral responses to sensory stimuli can be highly variable across the reproductive cycle. Female green treefrogs (Hyla cinerea) use the male vocal signal to locate and choose a mate. Gravid females approach a vocalizing male to mate but do not approach if they have recently mated. Such differences in behavioral response may be due in part to shifts in the neural representation of auditory information in the brain. In this study, we investigated the influence of female reproductive state on neural responses in the auditory midbrain to both communication signals (advertisement calls) and non-communication sounds (band limited noise bursts). Recently mated females exhibited significantly reduced response strengths compared to females not recently mated. Reduced response strengths in post-mated females were in response to both noise bursts and male advertisement calls but were limited to the lower frequency range corresponding to the amphibian papilla of the peripheral auditory system. Our results therefore show that the ability of social signals to stimulate the auditory system differs in females depending on their reproductive state, and that the differential effect on low versus high spectral sensitivities may influence the way the two spectral peaks of male advertisement calls are represented.


Anura/physiology , Auditory Pathways/physiology , Mesencephalon/physiology , Sexual Behavior, Animal/physiology , Vocalization, Animal/physiology , Animals , Behavior, Animal/physiology , Female , Male
14.
Gen Comp Endocrinol ; 132(2): 183-9, 2003 Jun 15.
Article En | MEDLINE | ID: mdl-12812764

In the common Azorean rock-pool blenny, Parablennius parvicornis, males exhibit alternative reproductive morphologies: (1) larger males defend nest sites, provide parental care, have anal glands (involved in pheromone release), testicular glands, and low gonad:body weight ratio (GSI) and (2) smaller, younger, males do not defend nests, have reduced glands and high GSI. These smaller non-nesting males behave as satellites (associated with nests) or sneakers (moving among nests), attempting to achieve parasitic fertilizations via sperm competition. In non-mammals, arginine vasotocin (AVT) is a key hypothalamic peptide involved in the control of reproductive behavior and physiology, and several fish species that exhibit alternative male reproductive morphs show polymorphism in AVT brain chemistry. We conducted an immunocytochemical study to generate comparative data on this intertidal blenny. Our analysis showed no difference in AVT-immunoreactive cell number or size between the male morphs, which is consistent with studies on other fish, including blennies. The number of AVT cells was positively correlated to fish body mass, while cell size showed no such relation. If corrected for body mass, the smaller non-nesting males have significantly more cells than the large nesting males. Our data suggest that the size and number of forebrain AVT cells develops initially to allow for reproduction in the young non-nesting males and this pattern does not appear to change when males take on the nesting morphotype later in life. This result appears to be consistent in many fishes with alternative male morphotypes.


Brain Chemistry/physiology , Fishes/physiology , Reproduction/physiology , Animals , Behavior, Animal/physiology , Body Weight/physiology , Cell Count , Cell Size/physiology , Female , Immunohistochemistry , Male , Nesting Behavior/physiology , Preoptic Area/cytology , Preoptic Area/metabolism , Sex Characteristics , Vasotocin/metabolism
...