Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890558

RESUMEN

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Asunto(s)
Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , 5'-Nucleotidasa/metabolismo , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ejercicio Físico , Caspasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo
2.
J Nutr Biochem ; 115: 109280, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796549

RESUMEN

The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1ß density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Ratas , Animales , Ratas Wistar , Adenosina Desaminasa/metabolismo , Acetilcolinesterasa/metabolismo , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Transducción de Señal , Colinérgicos/uso terapéutico
3.
Mol Cell Endocrinol ; 563: 111852, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657632

RESUMEN

Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.


Asunto(s)
Diabetes Mellitus Tipo 1 , Metformina , Ratas , Animales , Colecalciferol , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , 5'-Nucleotidasa/metabolismo , Metformina/farmacología , Adenosina/farmacología
4.
Purinergic Signal ; 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36522571

RESUMEN

ATP and adenosine exert pivotal roles in the development, maintenance, and metastatic spreading of melanoma. The action of such key melanoma tumor microenvironment (TME) constituents might be complementary or opposed, and their effects are not exclusive to immune cells but also to other host cells and tumor cells. The effects of ATP are controlled by the axis CD39/73, resulting in adenosine, the main actor in the TME, and A2A is the crucial mediator of its effects. We evaluated ATP and adenosine signaling through A2A on B16F10 melanoma cells using istradefylline (IST) (antiparkinsonian A2A antagonist) and caffeine (CAF) treatments after exposure to ATP and adenosine. Adenosine increased melanoma cell viability and proliferation in a concentration-dependent manner. ATP increases viability only as a substrate by CD39 to produce adenosine. Both IST and CAF are toxic to B16F10 cells, but only IST potentialized paclitaxel-induced cytotoxic effects, even decreasing its IC50 value. IST positively modulated CD39 and CD73 expression. CD39 activity was increased, and E-ADA was reduced, indicating that the melanoma cells promoted compensatory feedback in the production and maintenance of adenosine levels. A2A antagonism by IST reduced the factors associated with malignancy, like migration, adhesion, colony formation, and the capacity to produce melanin. Moreover, IST significantly increases nitric oxide (NO) production, which correlates to a decline in melanoma cell viability by apoptotic events. Altogether, our results suggest that adenosine signaling through A2A is essential for B16F10 cells, and its inhibition by IST causes compensatory purinergic enzymatic modulations. Furthermore, IST is a promising therapy that provides new ways to improve current melanoma treatments.

5.
J Immunol Res ; 2021: 2695490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33532505

RESUMEN

Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.


Asunto(s)
Aluminio/efectos adversos , Microglía/efectos de los fármacos , Microglía/metabolismo , Receptores Purinérgicos/metabolismo , Animales , Biomarcadores , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Lipopolisacáridos/inmunología , Ratones , Microglía/inmunología , Receptores Purinérgicos/genética
6.
Biomed Pharmacother ; 137: 111273, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33524787

RESUMEN

Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.


Asunto(s)
Diabetes Mellitus/metabolismo , Hipertensión/metabolismo , Purinas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , 5'-Nucleotidasa/metabolismo , Adenosina Desaminasa/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Comunicación Celular , Diabetes Mellitus/epidemiología , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/terapia , Dieta Saludable , Ejercicio Físico , Humanos , Hipertensión/epidemiología , Hipertensión/fisiopatología , Hipertensión/terapia , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Antagonistas del Receptor Purinérgico P2/uso terapéutico , Transducción de Señal
7.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230598

RESUMEN

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Asunto(s)
Lipopolisacáridos/toxicidad , Condicionamiento Físico Animal/fisiología , Sepsis/inducido químicamente , Sepsis/prevención & control , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Sepsis/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Platelets ; 30(7): 878-885, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30346867

RESUMEN

Acute bouts of high-intensity intermittent exercise (HIIE) or sports are associated with changes in lymphocytes and platelet functions and we hypothesized that the purinergic system is involved with these alterations. We investigated the activity of ectonucleotidases in platelets and lymphocytes as well as the platelet aggregation of futsal players in response to an acute protocol of HIIE. Thus, 19 male semi-professional futsal players were submitted to 40 min of HIIE on a treadmill. Blood samples were collected three-time points: before exercise, immediately after, and 30 min after the end of the session. Platelet-rich plasma (PRP) and lymphocytes were isolated. ATP, ADP, AMP, and adenosine hydrolysis, NTPDase1 (CD39) expression as well as platelet aggregation were measured. Our results showed HIIE induced a decrease in ATP and ADP hydrolysis in platelets, an increase in adenosine hydrolysis and an increase in platelet aggregation immediately after exercise. After 30 min of recovery, enzymatic activity and platelet aggregation returned to baseline levels. In lymphocytes, adenosine hydrolysis was augmented immediately after exercise and remained increased even after 30 min of recovery. In conclusion, acute HIIE triggers a transient proaggregant status that is reverted after a 30 min of recovery. The effects of HIIE in lymphocytes remained after 30 min of recovery, indicating a pro-inflammatory response. This work elucidated some of the mechanisms by which purinergic system regulates lymphocytes and platelets activities related to HIIE, suggesting that the type of exercise may influence an increase in platelet aggregation even in trained individuals.


Asunto(s)
Plaquetas/metabolismo , Linfocitos/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Atletas , Femenino , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...