Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570515

RESUMEN

The effects of graphene addition on the phase formation and superconducting properties of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 (Bi-2223) ceramics synthesized using the co-precipitation method were systematically investigated. Series samples of Bi-2223 were added with different weight percentages (x = 0.0, 0.3, 0.5 and 1.0 wt.%) of graphene nanoparticles. The samples' phase formations and crystal structures were characterized via X-ray diffraction (XRD), while the superconducting critical temperatures, Tc, were investigated using alternating current susceptibility (ACS). The XRD showed that a high-Tc phase, Bi-2223, and a small low-Tc phase, Bi-2212, dominated the samples. The volume fraction of the Bi-2223 phase increased for the sample with x = 0.3 wt.% and 0.5 wt.% of graphene and slightly reduced at x = 1.0 wt.%. The ACS showed that the onset critical temperature, Tc-onset, phase lock-in temperature, Tcj, and coupling peak temperature, TP, decreased when graphene was added to the samples. The susceptibility-temperature (χ'-T) and (χ″-T) curves of each sample, where χ' and χ″ are the real and imaginary parts of the susceptibility, respectively, were obtained. The critical temperature of the pure sample was also measured.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432245

RESUMEN

A bulk YBa2Cu3O7-δ (Y-123) superconductor synthesized by a thermal treatment method was added with different weight percentages (x = 0.0, 0.2, 1.0, 1.5, and 2.0 wt.%) of BiFeO3 (BFO) nanoparticle. X-ray diffraction (XRD), alternating current susceptibility (ACS), and field emission scanning electron microscopy (FESEM) were used to determine the properties of the samples. From the XRD results, all samples showed an orthorhombic crystal structure with a Pmmm space group. The sample x = 1.0 wt.% gave the highest value of Y-123. The high amounts of BFO degraded the crystallite size of the sample, showing that the addition did not promote the grain growth of Y-123. From ACS results, the Tc-onset value was shown to be enhanced by the addition of the BFO nanoparticle, where x = 1.5 wt.% gave the highest Tc value (91.91 K). The sample with 1.5 wt.% showed a high value of Tp (89.15 K). The FESEM analysis showed that the average grain size of the samples decreased as BFO was introduced. However, the small grain size was expected to fill in the boundary, which would help in enhancing the grain connectivity. Overall, the addition of the BFO nanoparticles in Y-123 helped to improve the superconducting properties, mainly for x = 1.5 wt.%.

3.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35957014

RESUMEN

In situ MgB2 superconducting samples were prepared by using the spark plasma sintering method. The density of the obtained bulks was up to 95% of the theoretical value predicted for the material. The structural and microstructural characterizations of the samples were investigated using X-ray diffraction and SEM and correlated to their superconducting properties, in particular their critical current densities, Jc, which was measured at 20 K. Extremely high critical current densities of up to 6.75 × 105 A/cm2 in the self-field and above 104 A/cm2 at 4 T were measured at 20 K, indicating that vortex pinning is very strong. This property is mainly attributed to the sample density and MgB2 nanograins in connection to the presence of MgO precipitates and areas rich in boron.

4.
Nanomaterials (Basel) ; 10(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640733

RESUMEN

The need for improved UV emitting luminescent materials underscored by applications in optical communications, sterilization and medical technologies is often addressed by wide bandgap semiconducting oxides. Among these, the Mg-doped ZnO system is of particular interest as it offers the opportunity to tune the UV emission by engineering its bandgap via doping control. However, both the doped system and its pristine congener, ZnO, suffer from being highly prone to parasitic defect level emissions, compromising their efficiency as light emitters in the ultraviolet region. Here, employing the process of femtosecond pulsed laser ablation in a liquid (fs-PLAL), we demonstrate the systematic control of enhanced UV-only emission in Mg-doped ZnO nanoparticles using both photoluminescence and cathodoluminescence spectroscopies. The ratio of luminescence intensities corresponding to near band edge emission to defect level emission was found to be six-times higher in Mg-doped ZnO nanoparticles as compared to pristine ZnO. Insights from UV-visible absorption and Raman analysis also reaffirm this defect suppression. This work provides a simple and effective single-step methodology to achieve UV-emission and mitigation of defect emissions in the Mg-doped ZnO system. This is a significant step forward in its deployment for UV emitting optoelectronic devices.

5.
ACS Omega ; 5(12): 6250-6259, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258859

RESUMEN

Growth and physical properties of bulk REBa2Cu3O7-δ (REBCO) superconductors fabricated by the infiltration growth (IG) method strongly depend on the initial size and morphology of the RE2BaCuO5 (211) particles. The present work details the novel method we developed for producing sharp-edged and surface-damaged 211 particles to be added to the REBCO bulks. We employed high-energy ultrasonic irradiation for pretreating the 211 particles and fabricated high-performance bulk single-grain YBa2Cu3O7-δ (YBCO) superconductors via the top-seeded IG process. Increasing the ultrasound irradiation power and time duration mechanically damaged the surface of the 211 particles, producing more fine and sharp edges. Systematic investigations of the microstructural properties of the final YBCO bulks indicated that the size and content of the 211 particles gradually decreased without any additional chemical doping. The effective grain refinement and improved interfacial defect densities enhanced the critical current density by a factor of two at 77 K and self-field as compared to a YBCO sample fabricated without any pretreatment. A maximum trapped field of 0.48 T at 77 K was obtained for a sample (20 mm diameter) with 211 particles treated for 60 min and 300 W ultrasound radiation. The effectiveness of the novel method is demonstrated by the superior performance of the YBCO bulk samples prepared as compared to bulk samples fabricated with the addition of Pt and CeO2. This method is novel, cost effective, and very convenient, maintaining high sample homogeneity, and is free of chemical contaminants as compared to other methods which significantly affect the properties of all REBCO bulk products grown by sintering, melt growth, and IG methods.

6.
Sci Rep ; 10(1): 2713, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066759

RESUMEN

Ca2Fe2O5 (CFO) is a potentially viable material for alternate energy applications. Incorporation of nitrogen in Ca2Fe2O5 (CFO-N) lattice modifies the optical and electronic properties to its advantage. Here, the electronic band structures of CFO and CFO-N were probed using Ultraviolet photoelectron spectroscopy (UPS) and UV-Visible spectroscopy. The optical bandgap of CFO reduces from 2.21 eV to 2.07 eV on post N incorporation along with a clear shift in the valence band of CFO indicating the occupation of N 2p levels over O 2p in the valence band. Similar effect is also observed in the bandgap of CFO, which is tailored upto 1.43 eV by N+ ion implantation. The theoretical bandgaps of CFO and CFO-N were also determined by using the Density functional theory (DFT) calculations. The photoactivity of these CFO and CFO-N was explored by organic effluent degradation under sunlight. The feasibility of utilizing CFO and CFO-N samples for energy storage applications were also investigated through specific capacitance measurements. The specific capacitance of CFO is found to increase to 224.67 Fg-1 upon N incorporation. CFO-N is thus found to exhibit superior optical, catalytic as well as supercapacitor properties over CFO expanding the scope of brownmillerites in energy and environmental applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...