Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Microbiol ; 22(1): 139, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590263

RESUMEN

BACKGROUND: Colorectal cancer ranks third globally among all types of cancers. Dysbiosis of the gut microbiota of people with CRC is one of the effective agents in the tumorigenesis and metastasis in this type of cancer. The population of Escherichia coli strains, a component of gut microbiota, is increased in the gut of people with CRC compared with healthy people. So, E.coli strains isolated from these patients may have a role in tumorigenesis. Because the most isolated strains belong to the B2 phylogenuetic group, there seems to be a linkage between the bacterium components and malignancy. MATERIAL AND METHODS: In this study, the proteomic comparison between isolated Ecoli from CRC patients and healthy people was assayed. The isolated spot was studied by Two-dimensional gel electrophoresis (2DE) and Liquid chromatography-mass spectrometry (LC-MS). The results showed that the expression of Outer membrane protein A (OmpA) protein increased in the commensal E.coli B2 phylogenetic group isolated from CRC patients. Additionally, we analyzed the effect of the OmpA protein on the expression of the four genes related to apoptosis in the HCT116 colon cancer cell line. RESULTS: This study identified that OmpA protein was overexpressed in the commensal E.coli B2 phylogenetic group isolated from CRC patients compared to the E.coli from the control group. This protein significantly decreased the expression of Bax and Bak, pro-apoptotic genes, as well as the expression of P53 in the HCT116 Cell Line, P < 0.0001. LC-MS and protein bioinformatics results confirmed that this protein is outer membrane protein A, which can bind to nucleic acid and some of the organelle proteins on the eukaryotic cell surface. CONCLUSIONS: According to our invitro and insilico investigations, OmpA of gut E.coli strains that belong to the B2 phylogenetic group can affect the eukaryotic cell cycle.


Asunto(s)
Neoplasias del Colon , Infecciones por Escherichia coli , Apoptosis , Proteínas de la Membrana Bacteriana Externa , Carcinogénesis , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Células HCT116 , Humanos , Filogenia , Proteómica
2.
BMC Infect Dis ; 21(1): 361, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33865334

RESUMEN

BACKGROUND: Urinary Tract Infection (UTI) is one of the most common bacterial infectious diseases which causes considerable morbidity and costly health problems. Uropathogenic Escherichia coli (UPEC), the most common pathogen causing UTI, is a highly heterogeneous group of extraintestinal pathogenic E. coli (ExPEC) which may carry a variety of virulence factors and belonging to different phylogenetic backgrounds. The current study aimed to investigate the frequency and association between various virulence factors (VFs) and phylogenetic groups of UPEC and commensal isolates. METHODS: UPEC and commensal E. coli strains isolated from UTI and feces of healthy humans were compared for the presence of VFs and phylogenetic groups. Association between virulence genes was investigated and cluster analysis was employed. RESULTS: According to the results, among a 30 virulence markers tested, the pathogenicity-associated island (PAI), papAH, papEF, fimH, fyuA, and traT genes prevalence were statistically significant in UPEC isolates. A strong association was found between the B2 and D phylogenetic groups and clinical isolates of UPEC; while, commensal isolates were mostly associated with phylogenetic group A. The aggregated VFs scores were more than twice higher in the UPEC isolates in comparison with the commensal isolates. Interestingly, the B2 group in both UPEC and commensal isolates had the highest VF scores. A strong positive association was found between several virulence genes. The clustering results demonstrated that UPEC or commensal E. coli isolates were highly heterogeneous due to different composition of their virulence gene pool and pathogenicity islands. CONCLUSION: Genetic structure and VFs of UPEC strains vary from region to region; therefore, to control the UTI, the epidemiological aspects and characterization of the UPEC isolates need to be investigated in different regions. Since UPEC isolates are generally originate from the commensal strains, it may be feasible to reduce the UTI burden by interfering the intestinal colonization, particularly in the highly pathogenic clonal lineages such as B2.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena , Factores de Virulencia/genética , Virulencia/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Infecciones por Escherichia coli/epidemiología , Proteínas de Escherichia coli/genética , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/aislamiento & purificación , Escherichia coli Patógena Extraintestinal/patogenicidad , Femenino , Islas Genómicas/genética , Humanos , Lactante , Recién Nacido , Irán/epidemiología , Masculino , Persona de Mediana Edad , Filogenia , Prevalencia , Infecciones Urinarias/epidemiología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/patogenicidad , Adulto Joven
3.
BMC Res Notes ; 14(1): 151, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879237

RESUMEN

OBJECTIVE: The purpose of the present study was to investigate the antimicrobial susceptibility pattern, biofilm production, and the presence of biofilm genes among the S. maltophilia clinical isolates. A total of 85 clinical isolates of S. maltophilia were collected from patients referred to several hospitals. Susceptibility to antibiotics was investigated by disc diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). By the crystal violet staining method, the capability of biofilm formation was examined. The genes associated with biofilm production were investigated by the PCR-sequencing techniques. RESULTS: All isolates were resistant to doripenem, imipenem, and meropenem. Minocycline, trimethoprim/sulfamethoxazole and levofloxacin exhibited the highest susceptibility of 100%, 97.65%, and 95.29%, respectively. The results of crystal violet staining assay showed that all isolates (100%) form biofilm. Moreover, 24 (28.23%), 32 (37.65%), and 29 (34.12%) of isolates were categorized as weak, moderate, and strong biofilm producers, respectively. Biofilm genes including rpfF, spgM and rmlA had an overall prevalence of 89.41% (76/85), 100% (85/85) and 84.71% (72/85), respectively. Rational prescribing of antibiotics and implementation of infection control protocols are necessary to prevent further infection and development of antimicrobial resistance. Combination strategies based on the appropriate antibiotics along with anti-biofilm agents can also be selected to eliminate biofilm-associated infections.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Stenotrophomonas maltophilia , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Microbiana , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Stenotrophomonas maltophilia/genética
4.
Braz J Microbiol ; 46(1): 155-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26221102

RESUMEN

To determine the presence of some toxins of diarrheagenic Escherichia coli (DEC) in uropathogenic E. coli (UPEC), 138 urinary tract infection (UTI)-causing UPECs were analyzed. The astA , set , sen and cdtB genes were detected in 13 (9.4%), 2 (1.3%), 13 (9.4%) and 0 (0%) of UPEC isolates respectively. The results show that some genes encoding toxins can be transferred from DEC pathotypes to UPECs therefore these isolates can transform into potential diarrhea-causing agents.


Asunto(s)
Enterotoxinas/genética , Escherichia coli Uropatógena/genética , Infecciones por Escherichia coli/microbiología , Humanos , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/aislamiento & purificación
5.
Braz. j. microbiol ; 46(1): 155-159, 05/2015. tab
Artículo en Inglés | LILACS | ID: lil-748252

RESUMEN

To determine the presence of some toxins of diarrheagenic Escherichia coli (DEC) in uropathogenic E. coli (UPEC), 138 urinary tract infection (UTI)-causing UPECs were analyzed. The astA, set, sen and cdtB genes were detected in 13 (9.4%), 2 (1.3%), 13 (9.4%) and 0 (0%) of UPEC isolates respectively. The results show that some genes encoding toxins can be transferred from DEC pathotypes to UPECs therefore these isolates can transform into potential diarrhea-causing agents.


Asunto(s)
Humanos , Enterotoxinas/genética , Escherichia coli Uropatógena/genética , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA