Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 216: 114633, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36081245

RESUMEN

The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial from viral infection demands a solution that can be used both within healthcare settings and in the field, and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem combine the use of host gene signatures with our Lab-on-a-Chip (LoC) technology enabling low-cost POC expression analysis to detect Infectious Disease. Transcriptomics have been extensively investigated as a potential tool to be implemented in the diagnosis of infectious disease. On the other hand, LoC technologies using ion-sensitive field-effect transistor (ISFET), in conjunction with isothermal chemistries, are offering a promising alternative to conventional amplification instruments, owing to their portable and affordable nature. Currently, the data analysis of ISFET arrays are restricted to established methods by averaging the output of every sensor to give a single time-series. This simple approach makes unrealistic assumptions, leading to insufficient performance for applications that require accurate quantification such as Host-Transcriptomics. In order to reliably quantify transcripts on our LoC platform enabling the classification of infectious disease on-chip, we propose a novel data-driven algorithm for extracting time-to-positive values from ISFET arrays. The algorithm proposed correctly outputs a time-to-positive for all the reactions, with a high correlation to RT-qLAMP (0.85, R2 = 0.98, p < 0.01), resulting in a classification accuracy of 100% (CI, 95-100%). This work aims to bridge the gap between translating assays from microarray analysis to ISFET arrays providing benefits on tackling infectious disease and diagnostic testing in hard-to-reach areas of the world.


Asunto(s)
Antiinfecciosos , Técnicas Biosensibles , Enfermedades Transmisibles , Virosis , Bacterias/genética , Humanos , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , ARN
2.
J Clin Microbiol ; 58(11)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32907990

RESUMEN

Aspergillus fumigatus has widely evolved resistance to the most commonly used class of antifungal chemicals, the azoles. Current methods for identifying azole resistance are time-consuming and depend on specialized laboratories. There is an urgent need for rapid detection of these emerging pathogens at point-of-care to provide the appropriate treatment in the clinic and to improve management of environmental reservoirs to mitigate the spread of antifungal resistance. Our study demonstrates the rapid and portable detection of the two most relevant genetic markers linked to azole resistance, the mutations TR34 and TR46, found in the promoter region of the gene encoding the azole target cyp51A. We developed a lab-on-a-chip platform consisting of: (i) tandem-repeat loop-mediated isothermal amplification; (ii) state-of-the-art complementary metal-oxide-semiconductor microchip technology for nucleic acid amplification detection; and (iii) a smartphone application for data acquisition, visualization, and cloud connectivity. Specific and sensitive detection was validated with isolates from clinical and environmental samples from 6 countries across 5 continents, showing a lower limit of detection of 10 genomic copies per reaction in less than 30 min. When fully integrated with a sample preparation module, this diagnostic system will enable the detection of this ubiquitous fungus at the point-of-care, and could help to improve clinical decision making, infection control, and epidemiological surveillance.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica , Proteínas Fúngicas/genética , Humanos , Dispositivos Laboratorio en un Chip , Pruebas de Sensibilidad Microbiana , Técnicas de Diagnóstico Molecular , Mutación , Técnicas de Amplificación de Ácido Nucleico
3.
Sci Rep ; 10(1): 4553, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165708

RESUMEN

Breast cancer (BC) is a common cancer in women worldwide. Despite advances in treatment, up to 30% of women eventually relapse and die of metastatic breast cancer. Liquid biopsy analysis of circulating cell-free DNA fragments in the patients' blood can monitor clonality and evolving mutations as a surrogate for tumour biopsy. Next generation sequencing platforms and digital droplet PCR can be used to profile circulating tumour DNA from liquid biopsies; however, they are expensive and time consuming for clinical use. Here, we report a novel strategy with proof-of-concept data that supports the usage of loop-mediated isothermal amplification (LAMP) to detect PIK3CA c.3140 A > G (H1047R), a prevalent BC missense mutation that is attributed to BC tumour growth. Allele-specific primers were designed and optimized to detect the p.H1047R variant following the USS-sbLAMP method. The assay was developed with synthetic DNA templates and validated with DNA from two breast cancer cell-lines and two patient tumour tissue samples through a qPCR instrument and finally piloted on an ISFET enabled microchip. This work sets a foundation for BC mutational profiling on a Lab-on-Chip device, to help the early detection of patient relapse and to monitor efficacy of systemic therapies for personalised cancer patient management.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Fosfatidilinositol 3-Quinasa Clase I/genética , Técnicas de Diagnóstico Molecular/instrumentación , Mutación Missense , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Neoplasias de la Mama/genética , Línea Celular Tumoral , Cartilla de ADN/genética , Detección Precoz del Cáncer , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Biopsia Líquida , Células MCF-7 , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Proyectos Piloto , Prueba de Estudio Conceptual
4.
IEEE Trans Biomed Circuits Syst ; 14(2): 359-372, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32070997

RESUMEN

An ultra-high frame rate and high spatial resolution ion-sensing Lab-on-Chip platform using a 128 × 128 CMOS ISFET array is presented. Current mode operation is employed to facilitate high-speed operation, with the ISFET sensors biased in the triode region to provide a linear response. Sensing pixels include a reset switch to allow in-pixel calibration for non-idealities such as offset, trapped charge and drift by periodically resetting the floating gate of the ISFET sensor. Current mode row-parallel signal processing is applied throughout the readout pipeline including auto-zeroing circuits for the removal of fixed pattern noise. The 128 readout signals are multiplexed to eight high-sample-rate on-chip current mode ADCs followed by an off-chip PCIe-based readout system on a FPGA with a latency of 0.15 s. Designed in a 0.35 µm CMOS process, the complete system-on-chip occupies an area of 2.6 × 2.2 [Formula: see text] with a pixel size of 18 × 12.5 µ[Formula: see text] and the whole system achieves a frame rate of 3000 fps which is the highest reported in the literature for ISFET arrays. The platform is demonstrated in the application of real-time ion-imaging through the high-speed visualization of sodium hydroxide (NaOH) diffusion in water at 60 fps on screen in addition to slow-motion playback of ion-dynamics recorded at 3000 fps.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Dispositivos Laboratorio en un Chip , Imagen Molecular/métodos , Hidróxido de Sodio/análisis , Calibración , Electrónica/instrumentación , Diseño de Equipo , Agua/química
5.
Biosens Bioelectron ; 145: 111678, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31541787

RESUMEN

Early and accurate diagnosis of malaria and drug-resistance is essential to effective disease management. Available rapid malaria diagnostic tests present limitations in analytical sensitivity, drug-resistance testing and/or quantification. Conversely, diagnostic methods based on nucleic acid amplification stepped forwards owing to their high sensitivity, specificity and robustness. Nevertheless, these methods commonly rely on optical measurements and complex instrumentation which limit their applicability in resource-poor, point-of-care settings. This paper reports the specific, quantitative and fully-electronic detection of Plasmodium falciparum, the predominant malaria-causing parasite worldwide, using a Lab-on-Chip platform developed in-house. Furthermore, we demonstrate on-chip detection of C580Y, the most prevalent single-nucleotide polymorphism associated to artemisinin-resistant malaria. Real-time non-optical DNA sensing is facilitated using Ion-Sensitive Field-Effect Transistors, fabricated in unmodified complementary metal-oxide-semiconductor (CMOS) technology, coupled with loop-mediated isothermal amplification. This work holds significant potential for the development of a fully portable and quantitative malaria diagnostic that can be used as a rapid point-of-care test.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Malaria Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular , Animales , Artemisininas/efectos adversos , Artemisininas/uso terapéutico , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Sistemas de Atención de Punto , Semiconductores
6.
IEEE Trans Biomed Circuits Syst ; 12(5): 1202-1214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30010599

RESUMEN

This paper presents a large-scale CMOS chemical-sensing array operating in current mode for real-time ion imaging and detection of DNA amplification. We show that the current-mode operation of ion-sensitive field-effect transistors in velocity saturation devices can be exploited to achieve an almost perfect linearity in their input-output characteristics (pH-current), which are aligned with the continuous scaling trend of transistors in CMOS. The array is implemented in a 0.35-m process and includes 12.8 k sensors configured in a 2T per pixel topology. We characterize the array by taking into account nonideal effects observed with floating gate devices, such as increased pixel mismatch due to trapped charge and attenuation of the input signal due to the passivation capacitance, and show that the selected biasing regime allows for a sufficiently large linear range that ensures a linear pH to current despite the increased mismatch. The proposed system achieves a sensitivity of 1.03 A/pH with a pH resolution of 0.101 pH and is suitable for the real-time detection of the NDM carbapenemase gene in E. Coli using a loop-mediated isothermal amplification.


Asunto(s)
ADN/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Transistores Electrónicos , ADN/genética , ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA