Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 143: 213153, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36343390

RESUMEN

Photothermal therapy (PTT) has emerged as a fast, precisive, and cost-effective anticancer therapy protocol. Here we applied our previously designed nanomaterial (Tocophotoxil) for prospective PTT application to manage radiation- and chemo-resistant cancers in a preclinical model. A PTT dose vs. efficacy relationship was established for radioresistant breast (ZR-75-1 50Gy, 4T1 20Gy) and chemo-resistant ovarian (A2780LR) cancer cells and tumors in mice models. Compared to the sensitive cases, resistant cells treated with PTT for a shorter duration show higher endurance. However, preclinical tumor xenografts treated with optimal PTT dose show 2-3 fold higher longevity (P ≤ 0.05) of treated mice monitored by non-invasive imaging methods. Elevated ERK and AKT activation in radioresistant or only AKT activation in chemo-resistant cells were contributory to higher cell survival in sub-optimal PTT dose. A comprehensive single-cell Raman map of PTT treated ZR-75-1 cell reveals broad-spectrum macromolecular deformities, including protein damage features. Marked induction of pJNK, unfolded protein response (UPR) pathway, increased reactive oxygen species (ROS), and lipid peroxidation in PTT-treated cells disrupted the intracellular homeostasis. Analyzing cellular ultrastructure, the coexistence of swollen endoplasmic reticulum, and autophagic bodies after PTT indicate possible coordination between UPR and autophagy pathways. Therefore, this comprehensive study provides new evidence on the potential impact of PTT as a standalone therapy for ablation of failed conventional therapy-resistant cancers in vivo, the success of which is intricately linked to the PTT dose optimization. The study, for the first time, also illustrates that under PTT treatment, concerted action of novel molecular switches such as JNK activation and UPR activation plays a vital role in triggering autophagy and cancer cell death.


Asunto(s)
Neoplasias , Terapia Fototérmica , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Estudios Prospectivos , Ratones Endogámicos BALB C , Neoplasias/terapia
2.
Nanomedicine ; 37: 102437, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273597

RESUMEN

Photothermal-therapy (PTT) inculcates near-infrared laser guided local heating effect, where high degree of precision is expected, but not well proven to-date. An ex vivo tissue biochemical map with molecular/biochemical response showing the coverage area out of an optimized PTT procedure can reveal precision information. In this work, Raman-microscopic mapping and linear discriminant analysis of spectra of PTT treated and surrounding tissue areas ex vivo are done, revealing three distinct spectral clusters/zones, with minimal overlap between the core treated and adjacent untreated zone. The core treated zone showed intense nucleic-acid, cytochrome/mitochondria and protein damage, an adjacent zone showed lesser degree of damages and far zone showed minimal/no damage. Immunohistochemistry for γH2AX (DNA damage marker protein) in PTT exposed tissue also revealed similar results. Altogether, this study reveals the utility of Raman-microspectroscopy for fine-tuning safety parameters and precision that can be achieved from PTT mediated tumor ablation in preclinical/clinical application.


Asunto(s)
Nanopartículas del Metal/química , Neoplasias/terapia , Terapia Fototérmica/métodos , Nanomedicina Teranóstica/tendencias , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Oro/química , Oro/farmacología , Histonas/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Espectrometría Raman
3.
ACS Appl Mater Interfaces ; 12(47): 52329-52342, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33170618

RESUMEN

Photothermal therapy (PTT), a simple and minimally invasive procedure, is an attractive option for cancer therapy. To date, inorganic agents have been widely employed as photothermal agents; however, organic molecules may provide a solution to rapid metabolic/in vivo clearance. Herein, we prepared lipid (S 75)-stabilized meso-tritolyl-BF2-oxasmaragdyrin nanoparticles (TBSNPs) using thin-film hydration and homogenization. Assessment of the physicochemical properties of the TBSNPs reveals the formation of particles of size <12 nm stabilized within the lipid matrix. The TBSNPs exhibit near infrared fluorescence (NIRF) being accompanied by an increase in non-radiative decay, leading to excellent photothermal properties. In vitro studies demonstrate excellent biocompatibility, hemocompatibility, cellular internalization, and photothermal efficacy (p = 0.0004). Extensive in vivo assessment of TBSNPs also highlights the non-toxic nature of the material and passive tumor homing. The strong NIRF exhibited by the material is exploited for whole-body imaging in the rodent model. The novel material also shows excellent photothermal efficacy (p = 0.0002) in a 4T1 xenograft mice model. The organic nature of the material coupled with its small size and strong NIRF provides an advantage for bio-elimination and potential clinical image-guided therapy over the inorganic counterparts.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Pirroles/química , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Ratones , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tamaño de la Partícula , Terapia Fototérmica , Espectroscopía Infrarroja Corta , Nanomedicina Teranóstica , Distribución Tisular , Trasplante Homólogo
4.
Environ Pollut ; 267: 115338, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32866861

RESUMEN

The physico-chemical properties of dust particles collected During Dust Storm (DDS) and After Dust Storm (ADS) events were studied using Scanning Electron Microscope coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS), X-ray Fluorescence Spectroscopy (XRF) and X-ray Photoelectron Spectroscopy (XPS). Morphological and compositional change in dust particles were observed as they react with the anthropogenic pollutants present in the urban environment. The calcite rich particles were observed to transform into calcium chloride, calcium nitrate, and calcium sulfate on reacting with the chlorides, nitrates, and sulfates present in the urban atmosphere. The frequency distributions of Aspect Ratio (AR) for the DDS and ADS particles were observed to be bimodal (mode peaks at 1.2 and 1.5) and monomodal (mode peak at 1.1), respectively. The highly irregular shaped solid dust particles were observed to transform into nearly spherical semisolid particles in the urban environment. XPS analysis confirms the high concentration of oxides, nitrates, and chlorides at the surface of ADS samples which show the signatures of mineral dust particles aging. Species with a high value of imaginary part of refractive index (like Cr metal, Fe metal, Cr2O3, FeO, Fe2O3) were observed at the surface of dust particles. At 550 nm wavelength, the light-absorbing potential of the observed species along with black carbon (BC) was found to vary in the order; Cr metal > Fe metal > Cr2O3> FeO > BC > Fe2O3> FeOOH. The presence of the aforementioned species on the surface of ADS particles will tremendously affect the particle optical and radiative properties compared to that of DDS particles. The present work could reduce the uncertainty in the radiation budget estimations of mineral dust and assessment of their climatic impacts over Delhi.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , India , Minerales , Tamaño de la Partícula
5.
Langmuir ; 35(24): 7805-7815, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31090425

RESUMEN

Integrating the concept of biodegradation and light-triggered localized therapy in a functional nanoformulation is the current approach in onco-nanomedicine. Morphology control with an enhanced photothermal response, minimal toxicity, and X-ray attenuation of polymer-based nanoparticles is a critical concern for image-guided photothermal therapy. Herein, we describe the simple design of cost-effective and degradable polycaprolactone-based plasmonic nanoshells for the integrated photothermolysis as well as localized imaging of cancer cells. The gold-deposited polycaprolactone-based plasmonic nanoshells (AuPCL NS) are synthesized in a scalable and facile way under ambient conditions. The synthesized nanoshells are monodisperse, fairly stable, and highly inert even at five times (250 µg/mL) the therapeutic concentration in a week-long test. AuPCL NS are capable of delivering standalone photothermal therapy for the complete ablation of cancer cells without using any anticancerous drugs and causing toxicity. It delivers the same therapeutic efficacy to different cancer cell lines, irrespective of their chemorefractory status and also works as a potential computed tomography contrast agent for the integrated imaging-directed photothermal cancer therapy. High biocompatibility, degradability, and promising photothermal efficacy of AuPCL NS are attractive aspects of this report that could open new horizons of localized plasmonic photothermal therapy for healthcare applications.


Asunto(s)
Nanomedicina/economía , Nanomedicina/métodos , Nanocáscaras/uso terapéutico , Fototerapia/economía , Fototerapia/métodos , Animales , Línea Celular Tumoral , Análisis Costo-Beneficio , Humanos , Hipertermia Inducida , Polímeros/química
6.
Colloids Surf B Biointerfaces ; 172: 430-439, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30196228

RESUMEN

Integrating metallic and non-metallic platform for cancer nanomedicine is a challenging task and bringing together multi-functionality of two interfaces is a major hurdle for biomaterial design. Herein, NIR light responsive advanced hybrid plasmonic carbon nanomaterials are synthesized, and their properties toward repetitive and highly localized photothermal cancer therapy are well understood. Graphene oxide nanosheets having thickness of ∼2 nm are synthesized using modified Hummers' method, thereafter functionalized with biodegradable NIR light responsive gold deposited plasmonic polylactic-co-glycolic acid nanoshells (AuPLGA NS, tuned at 808 nm) and NIR dye (IR780) to examine their repetitive and localized therapeutic efficacy as well resulting side effects to nearby healthy cells. It is observed that AuPLGA NS decorated graphene oxide nanosheets (GO-AuPLGA) and IR780 loaded graphene oxide nanosheets (GO-IR780) are capable in standalone complete photothermal ablation of cancer cells within 4 min. of 808 nm NIR laser irradiation and also without the aid of any anticancer drugs. However, GO-AuPLGA having the potential for repetitive photothermal treatment of a big tumor, ablate the cancer cells in highly localized fashion, without having side effects on neighboring healthy cells.


Asunto(s)
Carbono/química , Hipertermia Inducida , Nanoestructuras/química , Neoplasias/terapia , Fototerapia , Línea Celular Tumoral , Grafito/química , Humanos , Indoles/química , Nanoestructuras/ultraestructura , Neoplasias/patología , Espectroscopía de Fotoelectrones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman
7.
Appl Opt ; 48(19): 3526-36, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571907

RESUMEN

We develop a numerical algorithm for calculating the light-scattering properties of small particles of arbitrary shape on the basis of a method involving surface integral equations. The calculation error was estimated by performing a comparison between the proposed method and the exact Mie method with regard to the extinction efficiency factor, and the results show that the error is less than 1% when four or more nodes per wavelength are set on the surface of a spherical particle. The accuracy fluctuates in accordance with the distribution of nodal points on the particle surface with respect to the direction of propagation of the incident light. From our examinations, it is shown that the polar incidence alignment yields higher accuracy than equator incidence when a "latitude-longitude" type of mesh generation is adopted. The electric currents on the particle surface and the phase functions of all scattering directions are shown for particles shaped as spheres or hexagonal columns. It is shown that the phase function for a hexagonal column has four or eight cold spots. The phase function of a randomly oriented hexagonal column shows halolike peaks with size parameters of up to 20. This method can be applied to particles with a size parameter of up to about 20 without using the symmetry characteristic of the particle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA