Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(10): e47196, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077570

RESUMEN

A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor.


Asunto(s)
S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/genética , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Lipoilación , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/ultraestructura , Anemia/genética , Animales , Respiración de la Célula , Ácidos Grasos/genética , Femenino , Cuerpos Cetónicos/sangre , Ácido Láctico/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Prolapso Rectal/genética , Transducción de Señal
2.
Chem Biol ; 16(6): 667-75, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19549604

RESUMEN

Animals employ two systems for the de novo biosynthesis of fatty acids: a megasynthase complex in the cytosol (type I) that produces mainly palmitate, and an ensemble of freestanding enzymes in the mitochondria (type II) that produces mainly octanoyl moieties. The acyltransferases responsible for initiation of fatty acid biosynthesis in the two compartments are distinguished by their different substrate specificities: the type I enzyme transfers both the acetyl primer and the malonyl chain extender, whereas the type II enzyme is responsible for translocation of only the malonyl substrate. Crystal structures for the type I and II enzymes, supported by in silico substrate docking studies and mutagenesis experiments that alter their respective specificities, reveal that, although the two enzymes adopt a similar overall fold, subtle differences at their catalytic centers account for their different specificities.


Asunto(s)
Aciltransferasas/química , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo I/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Citosol/enzimología , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos/biosíntesis , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
J Biol Chem ; 283(47): 32880-8, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18796433

RESUMEN

Human glutathione transferase pi (GST pi) has been crystallized as a homodimer, with a subunit molecular mass of approximately 23 kDa; however, in solution the average molecular mass depends on protein concentration, approaching that of monomer at <0.03 mg/ml, concentrations typically used to measure catalytic activity of the enzyme. Electrostatic interaction at the subunit interface greatly influences the dimer-monomer equilibrium of the enzyme and is an important force for holding subunits together. Arg-70, Arg-74, Asp-90, Asp-94, and Thr-67 were selected as target sites for mutagenesis, because they are at the subunit interface. R70Q, R74Q, D90N, D94N, and T67A mutant enzymes were constructed, expressed in Escherichia coli, and purified. The construct of N-terminal His tag enzyme facilitates the purification of GST pi, resulting in a high yield of enzyme, but does not alter the kinetic parameters or secondary structure of the enzyme. Our results indicate that these mutant enzymes show no appreciable changes in K(m) for 1-chloro-2,4-dinitrobenzene and have similar CD spectra to that of wild-type enzyme. However, elimination of the charges of either Arg-70, Arg-74, Asp-90, or Asp-94 shifts the dimer-monomer equilibrium toward monomer. In addition, replacement of Asp-94 or Arg-70 causes a large increase in the K(m)(GSH), whereas substitution for Asp-90 or Arg-74 primarily results in a marked decrease in V(max). The GST pi retains substantial catalytic activity as a monomer probably because the glutathione and electrophilic substrate sites (such as for 1-chloro-2,4-dinitrobenzene) are predominantly located within each subunit.


Asunto(s)
Gutatión-S-Transferasa pi/química , Secuencia de Aminoácidos , Catálisis , Dicroismo Circular , Dimerización , Gutatión-S-Transferasa pi/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática
4.
Arch Biochem Biophys ; 474(1): 109-18, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18358825

RESUMEN

Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the M(w) of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The M(w) of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the K(m) value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer.


Asunto(s)
Gutatión-S-Transferasa pi/metabolismo , Peroxirredoxinas/metabolismo , Catálisis , Cromatografía Líquida de Alta Presión , Dimerización , Humanos , Hidrólisis , Cinética , Espectrometría de Fluorescencia
5.
Biochemistry ; 44(24): 8608-19, 2005 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-15952767

RESUMEN

To study the communication between the two active sites of dimeric glutathione S-transferase A1-1, we used heterodimers containing one wild-type (WT) active site and one active site with a single mutation at either Tyr9, Arg15, or Arg131. Tyr9 and Arg15 are part of the active site of the same subunit, while Arg131 contributes to the active site of the opposite subunit. The V(max) values of Tyr9 and Arg15 mutant enzymes were less than 2% that of WT, indicating their importance in catalysis. In contrast, V(max) values of Arg131 mutant enzymes were about 50-90% of that of WT enzyme while K(m)(GSH) values were approximately 3-8 times that of WT, suggesting that Arg131 plays a role in glutathione binding. The mutant enzyme (with a His(6) tag) and the WT enzyme (without a His(6) tag) were used to construct heterodimers (WT-Y9F, WT-Y9T, WT-R15Q, WT-R131M, WT-R131Q, and WT-R131E) by incubation of a mixture of wild-type and mutant enzyme at pH 7.5 in buffer containing 1,6-hexanediol, followed by dialysis against buffer lacking the organic solvent. The resultant heterodimers were separated from the wild-type and mutant homodimers using chromatography on nickel-nitrilotriacetic acid agarose. The V(max) values of all heterodimers were lower than expected for independent active sites. Our experiments demonstrate that mutation of an amino acid residue in one active site affects the activity in the other active site. Modeling studies show that key amino acid residues and water molecules connect the two active sites. This connectivity is responsible for the cross-talk between the active sites.


Asunto(s)
Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Dicroismo Circular , Dimerización , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
BMC Biol ; 2: 2, 2004 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15028118

RESUMEN

BACKGROUND: Glutaminyl cyclase (QC) forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP) and mutated the apparent active site residues to assess their role in QC catalysis. RESULTS: The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering) and the two glutamates (201 and 202), while the two aspartates (159 and 248) appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1) in the purified enzyme. CONCLUSIONS: We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.


Asunto(s)
Aminoaciltransferasas/química , Fosfopiruvato Hidratasa/química , Hipófisis/enzimología , Pliegue de Proteína , Vibrio/enzimología , Secuencia de Aminoácidos , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Zinc/metabolismo
7.
Protein Expr Purif ; 32(1): 141-6, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14680951

RESUMEN

Human pituitary glutaminyl cyclase (hQC) was expressed in Drosophila S2 cells under the control of an inducible metallothionene promoter and fused to the Drosophila immunoglobulin-binding protein signal sequence to enable secretion into the culture media. Expression levels reached 50 microg/mL culture media after 7 days of induction. The enzyme was purified to homogeneity directly from culture media by affinity chromatography on Reactive Blue 4-agarose using a step pH elution. The identity of the expressed protein was confirmed by peptide mass mapping and Western blotting. Glutaminyl cyclase was expressed as a fully active 37 kDa enzyme with kcat/Km values of 14.3, 9.3, and 2.4 mM(-1)s(-1) for the substrates Gln-Gln, Gln-NH(2), and Gln-t-butyl ester, respectively. The two cysteines were disulfide bonded, and the lone predicted glycosylation site, asparagine 49, was shown by both enzymatic deglycosylation of the expressed enzyme and site-directed mutagenesis to be glycosylated.


Asunto(s)
Aminoaciltransferasas/genética , Aminoaciltransferasas/aislamiento & purificación , Drosophila/citología , Drosophila/genética , Hipófisis/enzimología , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Animales , Línea Celular , Cromatografía de Afinidad , Disulfuros/metabolismo , Glicosilación , Humanos , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA