Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Am J Med Genet A ; 194(7): e63531, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421086

RESUMEN

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 3 , Variaciones en el Número de Copia de ADN , Fenotipo , Humanos , Femenino , Masculino , Cromosomas Humanos Par 3/genética , Duplicación Cromosómica/genética , Niño , Variaciones en el Número de Copia de ADN/genética , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Adolescente , Estudios de Cohortes , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Adulto , Lactante
2.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37974505

RESUMEN

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Asunto(s)
Aneuploidia , Trastornos de los Cromosomas , Cromosomas Humanos Par 22 , Anomalías del Ojo , Cardiopatías Congénitas , Humanos , Estudios Retrospectivos , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética
3.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369750

RESUMEN

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Asunto(s)
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Discapacidad Intelectual , Microcefalia , Humanos , Cromosomas Humanos Par 1 , Hipotonía Muscular , Deleción Cromosómica , Fenotipo
4.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137615

RESUMEN

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Humanos , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Estudios Prospectivos
5.
Genes (Basel) ; 13(7)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35886062

RESUMEN

Exon skipping is a promising therapeutic approach. One important condition for this approach is that the exon-skipped form of the gene can at least partially perform the required function and lead to improvement of the phenotype. It is therefore critical to identify the exons that can be skipped without a significant deleterious effect on the protein function. Pathogenic variants in the DMD gene are responsible for Duchenne muscular dystrophy (DMD). We report for the first time a deletion of the in-frame exon 49 associated with a strikingly normal muscular phenotype. Based on this observation, and on previously known therapeutic approaches using exon skipping in DMD for other single exons, we aimed to extend the clinical use of exon skipping for patients carrying truncating mutations in exon 49. We first determined the precise genomic position of the exon 49 deletion in our patients. We then demonstrated the feasibility of skipping exon 49 using an in vitro AON (antisense oligonucleotide) approach in human myotubes carrying a truncating pathogenic variant as well as in healthy ones. This work is a proof of concept aiming to expand exon-skipping approaches for DMD exon 49.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Exones/genética , Humanos , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico
6.
Eur J Med Genet ; 65(4): 104458, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35189377

RESUMEN

TCF4 gene (18q21.1) encodes for a transcription factor with multiple isoforms playing a critical role during neurodevelopment. Molecular alterations of this gene are associated with Pitt-Hopkins syndrome, a severe condition characterized by intellectual disability, specific facial features and autonomic nervous system dysfunction. We report here three patients presenting with structural variations of the proximal part of TCF4 associated with a mild phenotype. The first patient is a six-years-old girl carrier of a pericentric inversion of chromosome 18, 46,XX,inv(18)(p11.2q21.1). Whole genome sequencing (WGS) characterized the breakpoint at the base-pair level at chr18:1262334_1262336 and chr18:53254747_53254751 (hg19). This latter breakpoint disrupted the proximal promotor region of TCF4 in the first intron of the gene. The second and third patients are a son and his mother, carrier of a 46 kb deletion characterized by high-resolution chromosomal micro-array and WGS (chr:18:53243454_53287927, hg19) encompassing the first three exon of TCF4 gene and including the proximal promotor region. Expression studies on blood lymphocytes in these patients showed a marked decrease of mRNA level for long isoforms of TCF4 and an increased level for shorter isoforms. The patients described here, together with previously reported patients with proximal structural alterations of TCF4, help to delineate a phenotype of mild ID with non-specific facial dysmorphism without characteristic features of PTHS. It also suggests a gradient of phenotypic severity inversely correlated with the number of intact TCF4 promotor regions, with expression of short isoforms compensating in part the loss of longer isoforms.


Asunto(s)
Discapacidad Intelectual , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Facies , Humanos , Hiperventilación/genética , Discapacidad Intelectual/genética , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
7.
Clin Genet ; 101(3): 307-316, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34866188

RESUMEN

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Deleción Cromosómica , Inversión Cromosómica , Cromosomas Humanos Par 8 , Cuerpo Calloso/diagnóstico por imagen , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Leucoencefalopatías/genética , Fenotipo , Trisomía
8.
Clin Genet ; 101(2): 208-213, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34708403

RESUMEN

The YTH domain family member 3 gene (YTHDF3) encodes a reader of the abundant N6-methyladenosine (m6 A) modification of eukaryotic mRNA, which plays an essential role in regulating mRNA stability and is necessary to achieve normal development of the central nervous system in animal models. YTHDF3 has not previously been implicated in Mendelian disease despite a high probability of loss of function intolerance and statistical evidence of enrichment for gene-disruptive de novo variants in large-scale studies of individuals with intellectual disability and/or developmental delay. We report four individuals with deletion of 8q12.3, deletion size 1.38-2.60 Mb, encompassing YTHDF3, three of them were de novo, and in one case, the inheritance was unknown. Common features of the individuals (age range, 4-22 years) were developmental delay and/or intellectual disability. Two individuals underwent squint surgery. We suggest that haploinsufficiency of YTHDF3 causes a neurodevelopmental disorder with developmental delay and intellectual disability of variable degree.


Asunto(s)
Alelos , Deleción Cromosómica , Cromosomas Humanos Par 8 , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Proteínas de Unión al ARN/genética , Adolescente , Niño , Femenino , Estudios de Asociación Genética , Humanos , Pérdida de Heterocigocidad , Masculino , Fenotipo , Adulto Joven
9.
Nat Commun ; 11(1): 5797, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199684

RESUMEN

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Asunto(s)
Proteínas Argonautas/genética , Células Germinativas/metabolismo , Mutación/genética , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Interferencia de ARN , Adolescente , Animales , Proteínas Argonautas/química , Niño , Preescolar , Análisis por Conglomerados , Dendritas/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Células HEK293 , Hipocampo/patología , Humanos , Ratones , Simulación de Dinámica Molecular , Neuronas/metabolismo , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ratas , Transcriptoma/genética
10.
J Med Genet ; 57(5): 301-307, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287593

RESUMEN

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.


Asunto(s)
Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adolescente , Adulto , Trastorno del Espectro Autista/patología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Niño , Preescolar , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/patología , Femenino , Duplicación de Gen/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Fenotipo , Factores de Riesgo , Adulto Joven
11.
Am J Med Genet A ; 179(12): 2365-2373, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509347

RESUMEN

Fetal micrognathia can be detected early in pregnancy. Prognosis of micrognathia depends on the risk of respiratory distress at birth and on the long-term risk of intellectual disability. The purpose of this study was to evaluate the long-term prognosis of fetuses with prenatal diagnosis of micrognathia by estimating the prevalence and the severity of confirmed genetic diagnosis in our cohort. Our retrospective study included 41 fetuses with prenatal diagnosis of micrognathia referred to the multidisciplinary centers for prenatal diagnosis in Nice and Marseille, France, between 2006 and 2016. Fetal micrognathia was associated with cleft palate in 27 cases. A genetic cause was confirmed in 21 cases (67%). A chromosomal abnormality was present in 12 cases, including three copy-number variations diagnosed by array CGH. Monogenic disorders were identified in nine cases, most often after birth. Fetuses with family history of micrognathia or Pierre Robin sequence had a favorable outcome. Prognosis was good for the fetuses without associated findings and normal chromosomal analysis, with the exception of one case with a postnatal diagnosis of mandibulofacial dysostosis with microcephaly. Prognostic was poor for the fetuses with additional ultrasound anomalies, as only 5 out of 28 children had a good outcome. Prenatal diagnosis of micrognathia is an indicator of a possible fetal pathology justifying multidisciplinary management. Our study confirms the necessity of performing prenatal array CGH. Use of high-throughput gene sequencing in prenatal period could improve diagnostic performance, prenatal counseling, and adequate postnatal care.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Micrognatismo/diagnóstico , Micrognatismo/genética , Diagnóstico Prenatal , Feto/anomalías , Estudios de Asociación Genética/métodos , Humanos , Imagen por Resonancia Magnética , Disostosis Mandibulofacial/diagnóstico , Disostosis Mandibulofacial/genética , Evaluación del Resultado de la Atención al Paciente , Fenotipo , Diagnóstico Prenatal/métodos , Estudios Retrospectivos , Ultrasonografía Prenatal
12.
Clin Dysmorphol ; 28(4): 205-210, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31425298

RESUMEN

Gonadal mosaicism has been reported in a variety of dominant or X-linked conditions and should be considered in all cases of apparent de-novo variation. Recently, some cases of supposed parental germline mosaicism have been shown to result from low-level somatic mosaicism. In most of the cases, mosaicism has been reported for pathogenic single nucleotide variants with only a few cases of copy number variation mosaicism described so far. Herein, we present the first case of parental somatic and gonadal copy number variation mosaicism in the SATB2 gene. We report three brothers presenting with the SATB2-associated syndrome. They all carry the same 121-kb heterozygous intragenic deletion of SATB2. Parental somatic mosaicism was detected by array-comparative genomic hybridization on a maternal blood sample and confirmed by Fluorescence in situ hybridization analysis on blood and buccal cells. This clinical report highlights the importance of investigating for parental somatic mosaicism to estimate the proper recurrence risk for subsequent pregnancy.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Mosaicismo , Linaje , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Síndrome
14.
Prenat Diagn ; 39(11): 986-992, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31273809

RESUMEN

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.


Asunto(s)
Cromosomas Humanos Par 14 , Cromosomas Humanos Par 15 , Diagnóstico Prenatal , Translocación Genética , Disomía Uniparental , Adulto , Femenino , Humanos , Masculino , Embarazo , Estudios Retrospectivos , Medición de Riesgo
15.
Prenat Diagn ; 39(10): 871-882, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31172545

RESUMEN

OBJECTIVE/METHOD: 1p36 deletion syndrome is considered to be the most common deletion after 22q11.2 deletion. It is characterized by specific facial features, developmental delay, and organ defects. The primary objective of the present multicenter study was to survey all the cases of 1p36 deletion diagnosed prenatally by French cytogenetics laboratories using a chromosomal microarray. We then compared these new cases with the literature data. RESULTS: Ten new cases were reported. On average, the 1p36 deletion was diagnosed at 19 weeks of gestation. The size of the deletion ranged from 1.6 to 16 Mb. The 1p36 deletion was the only chromosomal abnormality in eight cases and was associated with a complex chromosome 1 rearrangement in the two remaining cases. The invasive diagnostic procedure had always been prompted by abnormal ultrasound findings: elevated nuchal translucency, structural brain abnormality, retrognathia, or a cardiac defect. Multiple anomalies were present in all cases. DISCUSSION: We conclude that 1p36 deletion is not associated with any specific prenatal signs. We suggest that a prenatal observation of ventriculomegaly, congenital heart defect, or facial dysmorphism should prompt the clinician to consider a diagnosis of 1p36 deletion syndrome.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Diagnóstico Prenatal , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adulto , Deleción Cromosómica , Trastornos de los Cromosomas/epidemiología , Cromosomas Humanos Par 1/genética , Femenino , Francia/epidemiología , Humanos , Cariotipificación/métodos , Análisis por Micromatrices/métodos , Embarazo , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/estadística & datos numéricos , Estudios Retrospectivos , Adulto Joven
17.
Prenat Diagn ; 39(6): 464-470, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30896039

RESUMEN

OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.


Asunto(s)
Pruebas Genéticas/métodos , Cardiopatías Congénitas/genética , Análisis por Micromatrices/métodos , Diagnóstico Prenatal/métodos , Adulto , Aberraciones Cromosómicas , Cromosomas/química , Cromosomas/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Femenino , Feto/química , Feto/metabolismo , Francia , Cardiopatías Congénitas/diagnóstico , Humanos , Cariotipificación , Embarazo , Estudios Retrospectivos , Síndrome
18.
J Med Genet ; 56(8): 526-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30923172

RESUMEN

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Asunto(s)
Aberraciones Cromosómicas , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Reordenamiento Génico , Estudios de Asociación Genética , Fenotipo , Secuenciación Completa del Genoma , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Relación Estructura-Actividad , Translocación Genética , Adulto Joven
19.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639323

RESUMEN

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/genética , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/mortalidad , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/mortalidad , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Enfermedades del Recién Nacido/metabolismo , Enfermedades del Recién Nacido/patología , Pulmón/embriología , Pulmón/crecimiento & desarrollo , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Masculino , Herencia Materna , Organogénesis , Herencia Paterna , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/metabolismo
20.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698748

RESUMEN

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Metilación de ADN , Proteínas de Homeodominio/genética , Repeticiones de Microsatélite/genética , Células Cultivadas , Reprogramación Celular/genética , Atresia de las Coanas/genética , Atresia de las Coanas/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Células HCT116 , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Microftalmía/genética , Microftalmía/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Nariz/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA