Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(6): 4290-4300, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38510664

RESUMEN

Interstitial carbon-doped RuO2 catalyst with the newly reported ruthenium oxycarbonate phase is a key component for low-temperature CO2 methanation. However, a crucial factor is the stability of interstitial carbon atoms, which can cause catalyst deactivation when removed during the reaction. In this work, the stabilization mechanism of the ruthenium oxycarbonate active phase under reaction conditions is studied by combining advanced operando spectroscopic tools with catalytic studies. Three sequential processes: carbon diffusion, metal oxide reduction, and decomposition of the oxycarbonate phase and their influence by the reaction conditions, are discussed. We present how the reaction variables and catalyst composition can promote carbon diffusion, stabilizing the oxycarbonate catalytically active phase under steady-state reaction conditions and maintaining catalyst activity and stability over long operation times. In addition, insights into the reaction mechanism and a detailed analysis of the catalyst composition that identifies an adequate balance between the two phases, i.e., ruthenium oxycarbonate and ruthenium metal, are provided to ensure an optimum catalytic behavior.

2.
Small ; 19(44): e2304102, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37394707

RESUMEN

Herein, the electrochemical properties and reaction mechanism of Li3-2 x Cax V2 (PO4 )3 /C (x = 0, 0.5, 1, and 1.5) as negative electrode materials for sodium-ion/potassium-ion batteries (SIBs/PIBs) are investigated. All samples undergo a mixed contribution of diffusion-controlled and pseudocapacitive-type processes in SIBs and PIBs via Trasatti Differentiation Method, while the latter increases with Ca content increase. Among them, Li3 V2 (PO4 )3 /C exhibits the highest reversible capacity in SIBs and PIBs, while Ca1.5 V2 (PO4 )3 /C shows the best rate performance with a capacity retention of 46% at 20 C in SIBs and 47% at 10 C in PIBs. This study demonstrates that the specific capacity of this type of material in SIBs and PIBs does not increase with the Ca-content as previously observed in lithium-ion system, but the stability and performance at a high C-rate can be improved by replacing Li+ with Ca2+ . This indicates that the insertion of different monovalent cations (Na+ /K+ ) can strongly influence the redox reaction and structure evolution of the host materials, due to the larger ion size of Na+ and K+ and their different kinetic properties with respect to Li+ . Furthermore, the working mechanism of both LVP/C and Ca1.5 V2 (PO4 )3 /C in SIBs are elucidated via in operando synchrotron diffraction and in operando X-ray absorption spectroscopy.

3.
Nat Mater ; 22(6): 762-768, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37142737

RESUMEN

The generation of methane fuel using surplus renewable energy with CO2 as the carbon source enables both the decarbonization and substitution of fossil fuel feedstocks. However, high temperatures are usually required for the efficient activation of CO2. Here we present a solid catalyst synthesized using a mild, green hydrothermal synthesis that involves interstitial carbon doped into ruthenium oxide, which enables the stabilization of Ru cations in a low oxidation state and a ruthenium oxycarbonate phase to form. The catalyst shows an activity and selectivity for the conversion of CO2 into methane at lower temperatures than those of conventional catalysts, with an excellent long-term stability. Furthermore, this catalyst is able to operate under intermittent power supply conditions, which couples very well with electricity production systems based on renewable energies. The structure of the catalyst and the nature of the ruthenium species were acutely characterized by combining advanced imaging and spectroscopic tools at the macro and atomic scales, which highlighted the low-oxidation-state Ru sites (Run+, 0 < n < 4) as responsible for the high catalytic activity. This catalyst suggests alternative perspectives for materials design using interstitial dopants.

4.
ACS Appl Mater Interfaces ; 15(16): 20200-20207, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052376

RESUMEN

Li- and Mn-rich layered oxides (LMLOs) are promising cathode materials for Li-ion batteries (LIBs) owing to their high discharge capacity of above 250 mA h g-1. A high voltage plateau related to the oxidation of lattice oxygen appears upon the first charge, but it cannot be recovered during discharge, resulting in the so-called voltage decay. Disappearance of the honeycomb superstructure of the layered structure at a slow C-rate (e.g., 0.1 C) has been proposed to cause the first-cycle voltage decay. By comparing the structural evolution of Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO) at various current densities, the operando synchrotron-based X-ray diffraction results show that the lattice strain in bulk LLNMO is continuously increased over cycling, resulting in the first-cycle voltage loss upon Li-ion insertion. Unlike the LLNMO, the accumulated average lattice strain of LiNi0.8Co0.1Mn0.1O2 (NCM811) and LiNi0.6Co0.2Mn0.2O2 (NCM622) from the open-circuit voltage to 4.8 V could be released on discharge. These findings help to gain a deep understanding of the voltage decay in LMLOs.

5.
Adv Sci (Weinh) ; 10(11): e2207283, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36794292

RESUMEN

Polyanion-type phosphate materials, such as M3 V2 (PO4 )3 (M = Li/Na/K), are promising as insertion-type negative electrodes for monovalent-ion batteries including Li/Na/K-ion batteries (lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs)) with fast charging/discharging and distinct redox peaks. However, it remains a great challenge to understand the reaction mechanism of materials upon monovalent-ion insertion. Here, triclinic Mg3 V4 (PO4 )6 /carbon composite (MgVP/C) with high thermal stability is synthesized via ball-milling and carbon-thermal reduction method and applied as a pseudocapacitive negative electrode in LIBs, SIBs, and PIBs. In operando and ex situ studies demonstrate the guest ion-dependent reaction mechanisms of MgVP/C upon monovalent-ion storage due to different sizes. MgVP/C undergoes an indirect conversion reaction to form Mg0 , V0 , and Li3 PO4 in LIBs, while in SIBs/PIBs the material only experiences a solid solution with the reduction of V3+ to V2+ . Moreover, in LIBs, MgVP/C delivers initial lithiation/delithiation capacities of 961/607 mAh g-1 (30/19 Li+ ions) for the first cycle, despite its low initial Coulombic efficiency, fast capacity decay for the first 200 cycles, and limited reversible insertion/deinsertion of 2 Na+ /K+ ions in SIBs/PIBs. This work reveals a new pseudocapacitive material and provides an advanced understanding of polyanion phosphate negative material for monovalent-ion batteries with guest ion-dependent energy storage mechanisms.

6.
Small ; 18(25): e2201522, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35607746

RESUMEN

Lithium- and manganese-rich layered oxides (LMLOs, ≥ 250 mAh g-1 ) with polycrystalline morphology always suffer from severe voltage decay upon cycling because of the anisotropic lattice strain and oxygen release induced chemo-mechanical breakdown. Herein, a Co-free single-crystalline LMLO, that is, Li[Li0.2 Ni0.2 Mn0.6 ]O2 (LLNMO-SC), is prepared via a Li+ /Na+ ion-exchange reaction. In situ synchrotron-based X-ray diffraction (sXRD) results demonstrate that relatively small changes in lattice parameters and reduced average micro-strain are observed in LLNMO-SC compared to its polycrystalline counterpart (LLNMO-PC) during the charge-discharge process. Specifically, the as-synthesized LLNMO-SC exhibits a unit cell volume change as low as 1.1% during electrochemical cycling. Such low strain characteristics ensure a stable framework for Li-ion insertion/extraction, which considerably enhances the structural stability of LLNMO during long-term cycling. Due to these peculiar benefits, the average discharge voltage of LLNMO-SC decreases by only ≈0.2 V after 100 cycles at 28 mA g-1 between 2.0 and 4.8 V, which is much lower than that of LLNMO-PC (≈0.5 V). Such a single-crystalline strategy offers a promising solution to constructing stable high-energy lithium-ion batteries (LIBs).

7.
Inorg Chem ; 60(23): 17824-17836, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34743519

RESUMEN

A new series of Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) hexagonal double perovskite oxides have been synthesized by a solid-state reaction method by substituting Ba with Bi. The polycrystalline materials are structurally characterized by the laboratory X-ray diffraction, synchrotron X-ray, and neutron powder diffraction. The lattice parameters are found to increase with increasing Bi doping despite the smaller ionic radius of Bi3+ compared to Ba2+. The expansion is attributed to the reduction of Co/Ru-site cations. Scanning electron microscopy further shows that the grain size increases with the Bi content. All Ba2-xBixCoRuO6 (0.0 ≤ x ≤ 0.6) samples exhibit p-type behavior, and the electrical resistivity (ρ) is consistent with a small polaron hopping model. The Seebeck coefficient (S) and thermal conductivity (κ) are improved significantly with Bi doping. High values of the power factor (PF ∼ 6.64 × 10-4 W/m·K2) and figure of merit (zT ∼ 0.23) are obtained at 618 K for the x = 0.6 sample. These results show that Bi doping is an effective approach for enhancing the thermoelectric properties of hexagonal Ba2-xBixCoRuO6 perovskite oxides.

8.
Molecules ; 26(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641487

RESUMEN

The photocatalytic activity of layered perovskite-like oxides in water splitting reaction is dependent on the hydration level and species located in the interlayer slab: simple or complex cations as well as hydrogen-bonded or non-hydrogen-bonded H2O. To study proton localization and dynamics in the HCa2Nb3O10·yH2O photocatalyst with different hydration levels (hydrated-α-form, dehydrated-γ-form, and intermediate-ß-form), complementary Nuclear Magnetic Resonance (NMR) techniques were applied. 1H Magic Angle Spinning NMR evidences the presence of different proton containing species in the interlayer slab depending on the hydration level. For α-form, HCa2Nb3O10·1.6H2O, 1H MAS NMR spectra reveal H3O+. Its molecular motion parameters were determined from 1H spin-lattice relaxation time in the rotating frame (T1ρ) using the Kohlrausch-Williams-Watts (KWW) correlation function with stretching exponent ß = 0.28: Ea=0.2102 eV, τ0=9.01 × 10-12 s. For the ß-form, HCa2Nb3O10·0.8H2O, the only 1H NMR line is the result of an exchange between lattice and non-hydrogen-bonded water protons. T1ρ(1/T) indicates the presence of two characteristic points (224 and 176 K), at which proton dynamics change. The γ-form, HCa2Nb3O10·0.1H2O, contains bulk water and interlayer H+ in regular sites. 1H NMR spectra suggest two inequivalent cation positions. The parameters of the proton motion, found within the KWW model, are as follows: Ea=0.2178 eV, τ0=8.29 × 10-10 s.

9.
ACS Appl Mater Interfaces ; 13(5): 6309-6321, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33527829

RESUMEN

We studied the structural evolution and cycling behavior of TiNb2O7 (TNO) as a cathode in a nonaqueous hybrid dual-salt Mg-Li battery. A very high fraction of pseudocapacitive contribution to the overall specific capacity makes the material suitable for ultrafast operation in a hybrid battery, composed of a Mg-metal anode, and a dual-salt APC-LiCl electrolyte with Li and Mg cations. Theoretical calculations show that Li intercalation is predominant over Mg intercalation into the TNO in a dual-salt electrolyte with Mg2+ and Li+, while experimentally up to 20% Mg cointercalation was observed after battery discharge. In hybrid Mg-Li batteries, TNO shows capacities which are about 40 mA h g-1 lower than in single-ion Li batteries at current densities of up to 1.2 A g-1. This is likely due to a partial Mg cointercalation or/and location of Li cations on alternative crystallographic sites in the TNO structure in comparison to the Li-intercalation process in Li batteries. Generally, hybrid Mg-Li cells show a markedly superior applicability for a very prolonged operation (above 1000 cycles) with 100% Coulombic efficiency and a capacity retention higher than 95% in comparison to conventional Li batteries with TNO after being cycled either under a low (7.75 mA g-1) or high (1.55 A g-1) current density. The better long-term behavior of the hybrid Mg-Li batteries with TNO is especially pronounced at 60 °C. The reasons for this are an appropriate cathode electrolyte interface containing MgCl2 species and a superior performance of the Mg anode in APC-LiCl electrolytes with a dendrite-free, fast Mg deposition/stripping. This stable interface stands in contrast to the anode electrolyte interface in Li batteries with a Li anode in conventional carbonate-containing electrolytes, which is prone to dendrite formation, thus leading to a battery shortcut.

10.
J Am Chem Soc ; 142(31): 13391-13397, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32657126

RESUMEN

Porous metal-organic frameworks (MOFs) capable of storing a relatively high amount of dry methane (CH4) in the adsorbed phase are largely explored; however, solid CH4 storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH4 hydrates by taking advantage of the optimal pore confinement in relatively narrow cavities of hydrolytically stable MOFs. Unprecedentedly, we were able to isolate methane hydrate (MH) nanocrystals with an sI structure encapsulated inside MOF pores with an optimal cavity dimension. It was found that confined nanocrystals require cavities slightly larger than the unit cell crystal size of MHs (1.2 nm), as exemplified in the experimental case study performed on Cr-soc-MOF-1 vs smaller cavities of Y-shp-MOF-5. Under these conditions, the excess amount of methane stored in the pores of Cr-soc-MOF-1 in the form of MH was found to be ≈50% larger than the corresponding dry adsorbed amount at 10 MPa. More importantly, the pressure gradient driving the CH4 storage/delivery process could be drastically reduced compared to the conventional CH4-adsorbed phase storage on the dry Cr-soc-MOF-1 (≤3 MPa vs 10 MPa).

11.
Inorg Chem ; 59(13): 9108-9115, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32543185

RESUMEN

Phase transformations upon delithiation in layered oxides with the NaCrS2 structure type are widely studied for numerous combinations of 3d transition metals because of the application of LiCoO2 and its derivatives as cathode materials in rechargeable Li-ion batteries. However, complete replacement of 3d by 4d transition metals still yields phenomena never seen in compounds containing 3d metals only. In the present work, the structural evolution of Li-rich O3-Li(Li0.2Rh0.8)O2, having a mixed occupancy of 20% Li and 80% Rh in the metal-O slabs, was studied during electrochemical Li removal and insertion and compared with the isostructural stoichiometric LiRhO2. The latter compound undergoes a transformation from the layered NaCrS2 to the tunnel-like rutile-ramsdellite intergrowth structure of the γ-MnO2 type. Partial replacement of Rh by Li, in contrast, completely prevents this transition, resulting in a reversible cell expansion and shrinkage within the layered structure upon (de)lithiation. Moreover, no anomalously short Rh-O and O-O distances were observed in Lix≈0(Li0.2Rh0.8)O2 with the Rh4.75+ intermediate valence state at 4.8 V, in contrast to Lix≈0RhO2 with Rh4+ at 4.2 V, as confirmed by operando synchrotron X-ray diffraction and extended X-ray absorption fine structure studies. We believe that the difference in the Li-O and Rh-O covalency is responsible for the observed structural stabilization. The longer and more ionic Li-O bonds in the (Li,Rh)O2 layers impede the shortening of O-O distances needed for transformation to the γ-MnO2 type because of a higher negative charge on O anions connected to Li cations and the stronger electrostatic repulsion between them.

12.
Polymers (Basel) ; 10(6)2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30966604

RESUMEN

In the present work, the novel dense and supported membranes based on polyvinyl alcohol (PVA) with improved transport properties were developed by bulk and surface modifications. Bulk modification included the blending of PVA with chitosan (CS) and the creation of a mixed-matrix membrane by introduction of fullerenol. This significantly altered the internal structure of PVA membrane, which led to an increase in permeability with high selectivity to water. Surface modification of the developed modified dense membranes, based on composites PVA-CS and PVA-fullerenol-CS, was performed through (i) making of a supported membrane with a thin selective composite layer and (ii) applying of the layer-by-layer assembly (LbL) method for coating of nano-sized polyelectrolyte (PEL) layers to increase the membrane productivity. The nature of polyelectrolyte type-(poly(allylamine hydrochloride) (PAH), poly(sodium 4-styrenesulfonate) (PSS), poly(acrylic acid) (PAA), CS), and number of PEL bilayers (2⁻10)-were studied. The structure of the composite membranes was investigated by FTIR, X-ray diffraction, and SEM. Transport properties were studied during the pervaporation separation of 80% isopropanol⁻20% water mixture. It was shown that supported membrane consisting of hybrid layer of PVA-fullerenol (5%)⁻chitosan (20%) with five polyelectrolyte bilayers (PSS, CS) deposited on it had the best transport properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA