Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Cell ; 41(5): 837-852.e6, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37086716

RESUMEN

Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células T de Memoria , Memoria Inmunológica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Pulmón , Linfocitos T CD8-positivos
2.
Nat Commun ; 14(1): 597, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737607

RESUMEN

Plants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity. Our structural analyses reveal an unconventional active-site configuration adapted to COSY's specialized activity. Through mutagenesis studies and deuterium exchange experiments, we identify a unique proton exchange mechanism at the α-carbon of the o-hydroxylated trans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Quantum mechanical cluster modeling and molecular dynamics further support this key mechanism for lowering the activation energy of the rate-limiting trans-to-cis isomerization step in coumarin production. This study unveils an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on COSY's evolutionary origin and its recruitment to coumarin biosynthesis in eudicots.


Asunto(s)
Plantas , Protones , Isomerismo , Plantas/metabolismo , Aciltransferasas/metabolismo , Cumarinas
3.
J Mater Chem B ; 10(37): 7607-7621, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35713277

RESUMEN

The biomolecular corona that forms on particles upon contact with blood plays a key role in the fate and utility of nanomedicines. Recent studies have shown that precoating nanoparticles with serum proteins can improve the biocompatibility and stealth properties of nanoparticles. However, it is not fully clear how precoating influences biomolecular corona formation and downstream biological responses. Herein, we systematically examine three precoating strategies by coating bovine serum albumin (single protein), fetal bovine serum (FBS, mixed proteins without immunoglobulins), or bovine serum (mixed proteins) on three nanoparticle systems, namely supramolecular template nanoparticles, metal-phenolic network (MPN)-coated template (core-shell) nanoparticles, and MPN nanocapsules (obtained after template removal). The effect of protein precoating on biomolecular corona compositions and particle-immune cell interactions in human blood was characterized. In the absence of a pre-coating, the MPN nanocapsules displayed lower leukocyte association, which correlated to the lower amount (by 2-3 fold) of adsorbed proteins and substantially fewer immunoglobulins (more than 100 times) in the biomolecular corona relative to the template and core-shell nanoparticles. Among the three coating strategies, FBS precoating demonstrated the most significant reduction in leukocyte association (up to 97% of all three nanoparticles). A correlation analysis highlights that immunoglobulins and apolipoproteins may regulate leukocyte recognition. This study demonstrates the impact of different precoating strategies on nanoparticle-immune cell association and the role of immunoglobulins in bio-nano interactions.


Asunto(s)
Nanocápsulas , Corona de Proteínas , Apolipoproteínas , Comunicación Celular , Humanos , Inmunoglobulinas , Albúmina Sérica Bovina
4.
STAR Protoc ; 3(2): 101269, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35378884

RESUMEN

High-dimensional mass cytometry provides unparalleled insight into the cellular composition of the immune system. Here, we describe a mass-cytometry-based protocol to examine memory CD4+ T cell and memory B cell (MBC) responses in human peripheral blood. This approach allows for the identification of >50 distinct memory CD4+ T cell and MBC populations from a single clinical sample. This highly reproducible protocol has been successfully applied to multiple infectious disease settings to identify correlates of susceptibility or protection from infection. For complete details on the use and execution of this protocol, please refer to Ioannidis et al. (2021).


Asunto(s)
Células B de Memoria , Linfocitos T , Linfocitos T CD4-Positivos , Citometría de Flujo/métodos , Humanos , Recuento de Linfocitos
5.
J Nat Prod ; 85(5): 1436-1441, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473311

RESUMEN

Two new lactone lipids, scoriosin (1) and its methyl ester (2), with a rare furylidene ring joined to a tetrahydrofurandione ring, were isolated from Scorias spongiosa, commonly referred to as sooty mold. The planar structure of these compounds was assigned by 1D and 2D NMR. The conformational analysis of these molecules was undertaken to evaluate the relative and absolute configuration through GIAO NMR chemical shift analysis and ECD calculation. In addition to the potent antimicrobial activities, compound 2 strongly potentiated the activity of amphotericin B against Cryptococcus neoformans, suggesting the potential utility of this compound in combination therapies for treating cryptococcal infections.


Asunto(s)
Antiinfecciosos , Cryptococcus neoformans , Antifúngicos/farmacología , Ascomicetos , Lactonas/farmacología , Lípidos , Estructura Molecular
8.
ACS Appl Mater Interfaces ; 13(30): 35494-35505, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288640

RESUMEN

Polymer nanocapsules, with a hollow structure, are increasingly finding widespread use as drug delivery carriers; however, quantitatively evaluating the bio-nano interactions of nanocapsules remains challenging. Herein, poly(ethylene glycol) (PEG)-based metal-phenolic network (MPN) nanocapsules of three sizes (50, 100, and 150 nm) are engineered via supramolecular template-assisted assembly and the effect of the nanocapsule size on bio-nano interactions is investigated using in vitro cell experiments, ex vivo whole blood assays, and in vivo rat models. To track the nanocapsules by mass cytometry, a preformed gold nanoparticle (14 nm) is encapsulated into each PEG-MPN nanocapsule. The results reveal that decreasing the size of the PEG-MPN nanocapsules from 150 to 50 nm leads to reduced association (up to 70%) with phagocytic blood cells in human blood and prolongs in vivo systemic exposure in rat models. The findings provide insights into MPN-based nanocapsules and represent a platform for studying bio-nano interactions.


Asunto(s)
Sangre/metabolismo , Estructuras Metalorgánicas/química , Nanocápsulas/química , Polietilenglicoles/química , Pirogalol/análogos & derivados , Animales , Citometría de Flujo/métodos , Oro/química , Oro/metabolismo , Oro/farmacocinética , Oro/toxicidad , Humanos , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Estructuras Metalorgánicas/metabolismo , Estructuras Metalorgánicas/farmacocinética , Estructuras Metalorgánicas/toxicidad , Ratones , Nanocápsulas/toxicidad , Tamaño de la Partícula , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacocinética , Polietilenglicoles/toxicidad , Pirogalol/metabolismo , Pirogalol/farmacocinética , Pirogalol/toxicidad , Células RAW 264.7 , Ratas Sprague-Dawley
9.
Clin Transl Immunology ; 10(4): e1273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854773

RESUMEN

OBJECTIVES: The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when Plasmodium berghei ANKA (PbA)-infected mice show only minor clinical signs. METHODS: A 2-photon intravital microscopy (2P-IVM) brain imaging model was used to study the spatiotemporal context of early immunological events in situ during ECM. RESULTS: Early in the disease course, antigen-specific CD8+ T cells came in contact and arrested on the endothelium of post-capillary venules. CD8+ T cells typically adhered adjacent to, or were in the near vicinity of, perivascular macrophages (PVMs) that line post-capillary venules. Closer examination revealed that CD8+ T cells crawled along the inner vessel wall towards PVMs that lay on the abluminal side of large post-capillary venules. 'Activity hotspots' in large post-capillary venules were characterised by T-cell localisation, activated morphology and clustering of PVM, increased abutting of post-capillary venules by PVM and augmented monocyte accumulation. In the later stages of infection, when mice exhibited neurological signs, intravascular CD8+ T cells increased in number and changed their behaviour, actively crawling along the endothelium and displaying frequent, short-term interactions with the inner vessel wall at hotspots. CONCLUSION: Our study suggests an active interaction between PVM and CD8+ T cells occurs across the blood-brain barrier (BBB) in early ECM, which may be the initiating event in the inflammatory cascade leading to BBB alteration and neuropathology.

10.
Immunol Cell Biol ; 99(7): 680-696, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33797774

RESUMEN

High-dimensional cytometry represents an exciting new era of immunology research, enabling the discovery of new cells and prediction of patient responses to therapy. A plethora of analysis and visualization tools and programs are now available for both new and experienced users; however, the transition from low- to high-dimensional cytometry requires a change in the way users think about experimental design and data analysis. Data from high-dimensional cytometry experiments are often underutilized, because of both the size of the data and the number of possible combinations of markers, as well as to a lack of understanding of the processes required to generate meaningful data. In this article, we explain the concepts behind designing high-dimensional cytometry experiments and provide considerations for new and experienced users to design and carry out high-dimensional experiments to maximize quality data collection.


Asunto(s)
Citometría de Flujo , Humanos
11.
Cardiovasc Drugs Ther ; 35(6): 1281-1290, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33608862

RESUMEN

PURPOSE: Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. METHODS: In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. RESULTS: CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. CONCLUSIONS: CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Asunto(s)
Enfermedad Coronaria/patología , Células Endoteliales/patología , Trombosis/patología , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Ratones , Trombectomía
12.
ACS Nano ; 14(11): 15723-15737, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33112593

RESUMEN

When nanoparticles interact with human blood, a multitude of plasma components adsorb onto the surface of the nanoparticles, forming a biomolecular corona. Corona composition is known to be influenced by the chemical composition of nanoparticles. In contrast, the possible effects of variations in the human blood proteome between healthy individuals on the formation of the corona and its subsequent interactions with immune cells in blood are unknown. Herein, we prepared and examined a matrix of 11 particles (including organic and inorganic particles of three sizes and five surface chemistries) and plasma samples from 23 healthy donors to form donor-specific biomolecular coronas (personalized coronas) and investigated the impact of the personalized coronas on particle interactions with immune cells in human blood. Among the particles examined, poly(ethylene glycol) (PEG)-coated mesoporous silica (MS) particles, irrespective of particle size (800, 450, or 100 nm in diameter), displayed the widest range (up to 60-fold difference) of donor-dependent variance in immune cell association. In contrast, PEG particles (after MS core removal) of 860, 518, or 133 nm in diameter displayed consistent stealth behavior (negligible cell association), irrespective of plasma donor. For comparison, clinically relevant PEGylated doxorubicin-encapsulated liposomes (Doxil) (74 nm in diameter) showed significant variance in association with monocytes and B cells across all plasma donors studied. An in-depth proteomic analysis of each biomolecular corona studied was performed, and the results were compared against the nanoparticle-blood cell association results, with individual variance in the proteome driving differential association with specific immune cell types. We identified key immunoglobulin and complement proteins that explicitly enriched or depleted within the corona and which strongly correlated with the cell association pattern observed across the 23 donors. This study demonstrates how plasma variance in healthy individuals significantly influences the blood immune cell interactions of nanoparticles.


Asunto(s)
Nanopartículas , Corona de Proteínas , Proteínas Sanguíneas , Humanos , Tamaño de la Partícula , Proteómica , Dióxido de Silicio
13.
Nat Commun ; 11(1): 1867, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313070

RESUMEN

Plant halogenated natural products are rare and harbor various interesting bioactivities, yet the biochemical basis for the involved halogenation chemistry is unknown. While a handful of Fe(II)- and 2-oxoglutarate-dependent halogenases (2ODHs) have been found to catalyze regioselective halogenation of unactivated C-H bonds in bacteria, they remain uncharacterized in the plant kingdom. Here, we report the discovery of dechloroacutumine halogenase (DAH) from Menispermaceae plants known to produce the tetracyclic chloroalkaloid (-)-acutumine. DAH is a 2ODH of plant origin and catalyzes the terminal chlorination step in the biosynthesis of (-)-acutumine. Phylogenetic analyses reveal that DAH evolved independently in Menispermaceae plants and in bacteria, illustrating an exemplary case of parallel evolution in specialized metabolism across domains of life. We show that at the presence of azide anion, DAH also exhibits promiscuous azidation activity against dechloroacutumine. This study opens avenues for expanding plant chemodiversity through halogenation and azidation biochemistry.


Asunto(s)
Alcaloides/biosíntesis , Compuestos Ferrosos/metabolismo , Hidrolasas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Menispermaceae/metabolismo , Compuestos de Espiro/metabolismo , Alcaloides/química , Alcaloides/genética , Bacterias/metabolismo , Biocatálisis , Genes de Plantas/genética , Halogenación , Menispermaceae/embriología , Menispermaceae/genética , Mutagénesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Metabolismo Secundario/genética , Alineación de Secuencia , Compuestos de Espiro/química , Transcriptoma
15.
Adv Sci (Weinh) ; 7(6): 1902650, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32195089

RESUMEN

Particle-based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal-phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single-cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.

16.
Methods Mol Biol ; 1989: C1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31853890

RESUMEN

This chapter was inadvertently published with the acknowledgement section leaving out the following sentence: "This work received funding from South Australian Government PRIF program Project "International Cluster on Nanosafety" of Nicolas H. Voelcker and Enzo Lombi." This correction has been updated in the chapter.

17.
J Am Chem Soc ; 141(37): 14510-14514, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31487162

RESUMEN

The iron-dependent oxidase UndA cleaves one C3-H bond and the C1-C2 bond of dodecanoic acid to produce 1-undecene and CO2. A published X-ray crystal structure showed that UndA has a heme-oxygenase-like fold, thus associating it with a structural superfamily that includes known and postulated non-heme diiron proteins, but revealed only a single iron ion in the active site. Mechanisms proposed for initiation of decarboxylation by cleavage of the C3-H bond using a monoiron cofactor to activate O2 necessarily invoked unusual or potentially unfeasible steps. Here we present spectroscopic, crystallographic, and biochemical evidence that the cofactor of Pseudomonas fluorescens Pf-5 UndA is actually a diiron cluster and show that binding of the substrate triggers rapid addition of O2 to the Fe2(II/II) cofactor to produce a transient peroxo-Fe2(III/III) intermediate. The observations of a diiron cofactor and substrate-triggered formation of a peroxo-Fe2(III/III) intermediate suggest a small set of possible mechanisms for O2, C3-H and C1-C2 activation by UndA; these routes obviate the problematic steps of the earlier hypotheses that invoked a single iron.


Asunto(s)
Compuestos de Hierro/química , Oxidorreductasas/metabolismo , Peróxidos/química , Descarboxilación , Pseudomonas fluorescens/enzimología , Especificidad por Sustrato
18.
Artículo en Inglés | MEDLINE | ID: mdl-31546577

RESUMEN

The soundscape is defined by the International Standard Organization (ISO) 12913-1 as the human's perception of the acoustic environment, in context, accompanying physiological and psychological responses. Previous research is synthesized with studies designed to investigate soundscape at the 'unconscious' level in an effort to more specifically conceptualize biomarkers of the soundscape. This review aims firstly, to investigate the consistency of methodologies applied for the investigation of physiological aspects of soundscape; secondly, to underline the feasibility of physiological markers as biomarkers of soundscape; and finally, to explore the association between the physiological responses and the well-founded psychological components of the soundscape which are continually advancing. For this review, Web of Science, PubMed, Scopus, and PsycINFO were searched for peer-reviewed articles published in English with combinations of the keywords 'soundscape', 'environmental noise/sound', 'physiology/physiological', 'psychology/psychological', and 'perceptual attributes/affective/subjective assessment/appraisals'. Previous research suggests that Electrocardiography (ECG) and Vectorcardiography (VCG) biometrics quantifying Heart Rate (HR), stimulus-locked experimental design, and passive listening with homogeneous populations are predominantly applied to characterize the psychophysiology underlying the soundscape. Pleasantness and arousal are the most frequent psychological descriptors for soundscape subjective appraisals. Likewise, acoustic environments are reported to inconsistently evoke physiological responses with great variability among studies. The link between the perceptual attributes and physiological responses of soundscape vary within and among existing literature. While a few studies detected a link between physiological manifestations of soundscape and the perceptual attributes, the others failed to validate this link. Additionally, the majority of the study findings were limited to one or two physiological responses.


Asunto(s)
Percepción Auditiva , Emociones , Ruido , Acústica , Humanos
19.
J Biol Chem ; 294(42): 15193-15205, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31481469

RESUMEN

As a means to maintain their sessile lifestyle amid challenging environments, plants produce an enormous diversity of compounds as chemical defenses against biotic and abiotic insults. The underpinning metabolic pathways that support the biosynthesis of these specialized chemicals in divergent plant species provide a rich arena for understanding the molecular evolution of complex metabolic traits. Rosmarinic acid (RA) is a phenolic natural product first discovered in plants of the mint family (Lamiaceae) and is recognized for its wide range of medicinal properties and potential applications in human dietary and medical interventions. Interestingly, the RA chemotype is present sporadically in multiple taxa of flowering plants as well as some hornworts and ferns, prompting the question whether its biosynthesis arose independently across different lineages. Here we report the elucidation of the RA biosynthetic pathway in Phacelia campanularia (desert bells). This species represents the borage family (Boraginaceae), an RA-producing family closely related to the Lamiaceae within the Lamiids clade. Using a multi-omics approach in combination with functional characterization of candidate genes both in vitro and in vivo, we found that RA biosynthesis in P. campanularia involves specific activities of a BAHD acyltransferase and two cytochrome P450 hydroxylases. Further phylogenetic and comparative structure-function analyses of the P. campanularia RA biosynthetic enzymes clearly indicate that RA biosynthesis has evolved independently at least twice in the Lamiids, an exemplary case of chemotypic convergence through disparate evolutionary trajectories.


Asunto(s)
Cinamatos/metabolismo , Depsidos/metabolismo , Evolución Molecular , Lamiaceae/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lamiaceae/clasificación , Lamiaceae/genética , Redes y Vías Metabólicas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Rosmarínico
20.
Nat Commun ; 10(1): 3206, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324795

RESUMEN

Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot medicinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum-graecum), an eudicot culinary herb plant commonly used as a galactagogue. Both plants have independently recruited pairs of cytochromes P450 that catalyze oxidative 5,6-spiroketalization of cholesterol to produce diosgenin, with evolutionary progenitors traced to conserved phytohormone metabolism. This study paves the way for engineering the production of diosgenin and derived analogs in heterologous hosts.


Asunto(s)
Vías Biosintéticas , Sistema Enzimático del Citocromo P-450/metabolismo , Diosgenina/metabolismo , Furanos/metabolismo , Lipogénesis/fisiología , Compuestos de Espiro/metabolismo , Antibacterianos , Colesterol/metabolismo , Citocromos/metabolismo , Galactogogos , Perfilación de la Expresión Génica , Ivermectina/análogos & derivados , Melanthiaceae/química , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Trigonella
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA