Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 669: 327-335, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718586

RESUMEN

Nanobubbles (NBs) are classified in two distinct categories: surface and bulk. Surface NBs are readily observed using atomic force microscopy (AFM), while the existence of bulk NBs has been a subject of debate, conflicting with the diffusion theory's predictions. Current methodologies for identifying bulk NBs yield inconclusive results. In this study, Langmuir Blodgett (LB) technique and AFM, are utilized to visualize NB imprints on anionic, cationic and zwitterionic lipid films deposited on glass-slide substrates. Our analysis of Langmuir monolayers compression isotherms reveals the impact of bulk NBs on lipid monolayer development. AFM scans of the deposited lipid films consistently show NB imprints. Notably, cationic and zwitterionic film depositions exhibit NB formations from the 1st layer, whereas in anionic films, these formations are observed only after the 3rd layer. These results suggest that the origin of these imprinted formations may be attributed to bulk NBs.

2.
Environ Sci Pollut Res Int ; 30(53): 114032-114043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37855962

RESUMEN

Concern for environmental protection has increased throughout the years from a global perspective. To date, the predominance of adsorption as treatment technique in environmental chemistry remains unchallenged. Moreover, the scientific attention for investigating nanobubbles due to their unique properties has turned the search for their application in environmental processes with special emphasis on water treatment. This study is aimed at investigating the effect of rotation on batch adsorption process using commercial activated carbon as adsorbent material, compared with the widely used method of agitation. As liquid medium, deionized water and deionized water enhanced with nanobubbles (of air) were used. The wastewater was simulated by dissolving a common dye as model pollutant, methylene blue, at concentration of 300 mg/L in the tested liquid. The results indicated that the utilization of nanobubbles resulted in an improvement on adsorption rate, compared to the corresponding values of deionized water solutions. These results may lead to promising applications in the future, since just 1 h of operation increases the water purification and thus provides a simply applied, cost-effective, and rapid alternative.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Rotación , Aguas Residuales , Contaminantes Químicos del Agua/química , Carbón Orgánico , Azul de Metileno/química , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno
3.
Environ Sci Pollut Res Int ; 30(29): 73688-73701, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37195607

RESUMEN

Dyes are among the main environmental pollutants, due to the high amount of discharge of wastewater, lost in the dyeing process, without any further treatment. Anthraquinone dyes are stable and resistant in the aquatic system. Among the methods that have been applied to remove these dyes from wastewaters, adsorption on activated carbon has been reported as a very effective technique, and its modification with oxides and hydroxides of metals have been used to increase its surface area. In the present study, the production of activated carbon was originated by coconut shells, and a mixture of metals and metalloids, such as magnesium, silicate, lanthanum, and aluminum (AC-Mg-Si-La-Al), was used for its subsequent modification and applied to Remazol Brilliant Blue R (RBBR) removal. AC-Mg-Si-La-Al surface morphology was studied by BET, FTIR, and SEM methods. For the evaluation of AC-Mg-Si-La-Al, several parameters, such as dosage, pH, contact time, and initial RBBR concentration were studied. According to the results, in pH 5.0 ± 0.1, the dye percentage rate reached 100% by applying 0.5 g/L. Therefore, the optimal dose of 0.4 g/L and pH 5.0 ± 0.1 are selected, which leads to 99% removal of RBBR. The experimental data found to better fit to Freundlich isotherm (R2 = 0.9189) and pseudo-second-order kinetic (R2 = 0.9291) models and 4 h were the sufficient time for adsorption. According to thermodynamics, a positive value of ∆H0 (19.661 kJ/mol) suggests the endothermic nature of the process. The AC-Mg-Si-La-Al adsorbent was able to regenerate after 5 cycles of use, showing only a 17% decrease in its efficiency. Because of its effectiveness in full RBBR removal, AC-Mg-Si-La-Al could be further examined for the removal of several other dyes, even anionic or cationic.


Asunto(s)
Carbón Orgánico , Aguas Residuales , Adsorción , Antraquinonas , Colorantes
4.
Membranes (Basel) ; 13(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837630

RESUMEN

Graphene is a popular material with outstanding properties due to its single layer. Graphene and its oxide have been put to the test as nano-sized building components for separation membranes with distinctive structures and adjustable physicochemical attributes. Graphene-based membranes have exhibited excellent water and gas purification abilities, which have garnered the spotlight over the past decade. This work aims to examine the most recent science and engineering cutting-edge advances of graphene-based membranes in regard to design, production and use. Additional effort will be directed towards the breakthroughs in synthesizing graphene and its composites to create various forms of membranes, such as nanoporous layers, laminates and graphene-based compounds. Their efficiency in separating and decontaminating water via different techniques such as cross-linking, layer by layer and coating will also be explored. This review intends to offer comprehensive, up-to-date information that will be useful to scientists of multiple disciplines interested in graphene-based membranes.

5.
Environ Sci Pollut Res Int ; 29(50): 75223-75247, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36131179

RESUMEN

Over the past three decades, environmental concerns about the water pollution have been raised on societal and industrial levels. The presence of pollutants stemming from cosmetic products has been documented in wastewater streams outflowing from industrial as well as wastewater treatment plants. To this end, a series of consistent measures should be taken to prevent emerging contaminants of water resources. This need has driven the development of technologies, in an attempt to mitigate their impact on the environment. This work offers a thorough review of existing knowledge on cosmetic wastewater treatment approaches, including, coagulation, dissolved air flotation, adsorption, activated sludge, biodegradation, constructed wetlands, and advanced oxidation processes. Various studies have already documented the appearance of cosmetics in samples retrieved from wastewater treatment plants (WWTPs), which have definitely promoted our comprehension of the path of cosmetics within the treatment cycle; however, there are still multiple blanks to our knowledge. All treatments have, without exception, their own limitations, not only cost-wise, but also in terms of being feasible, effective, practical, reliable, and environmentally friendly.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Purificación del Agua , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
6.
Nanomaterials (Basel) ; 12(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014651

RESUMEN

The individual effect of nano- and micro-carbon-based fillers on the mechanical and the electrical properties of cement paste were experimentally examined in this study. The objective of the study was to separately examine the effects of size and morphology (platelets and fibers) of nano- and micro-reinforcement. Three different sizes of Graphene Nanoplatelets (GNPs), at contents of 0.05% and 0.20% and recycled milled carbon fibers (rCFs), at various dosages from 0.1-2.5% by weight of cement, were incorporated into the cementitious matrix. GNPs and rCFs were dispersed in water with air nanobubbles (NBs), an innovative method that, compared to common practice, does not require the use of chemicals or high ultrasonic energy. Compressive and bending tests were performed on GNPs- and rCFs-composites. The four-wire-method was used to evaluate the effect of the conductive fillers on the electrical resistivity of cement paste. The compressive and flexural strength of all the cementitious composites demonstrated a considerable increase compared to the reference specimens. Improvement of 269.5% and of 169% was observed at the compressive and flexural strength, respectively, at the GNPs-cement composites incorporating the largest lateral size GNPs at a concentration of 0.2% by weight of cement. Moreover, the rCFs-cement composites increased their compressive and flexural strength by 186% and 210%, respectively, compared to the reference specimens. The electrical resistivity of GNPs- and rCFs-composite specimens reduced up to 59% and 48%, respectively, compared to the reference specimens, which proves that the incorporation of GNPs and rCFs can create a conductive network within the cementitious matrix.

7.
Sci Total Environ ; 822: 153612, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35114231

RESUMEN

Despite the abundance of published reviews over the last few years, the inconsistent data representation in regards to the use of adsorbents in each work, renders the task of comparing them challenging. Disposing the adsorbent may have adverse environmental impact, which should be mitigated through regeneration and reuse processes, such as desorption. This review discusses how the importance of desorption and regeneration equates that of the adsorption stage, and presents various regeneration methods as well as the influencing parameters, advantages, and disadvantages thereof. For the purposes of this work, the adsorbents have been categorized into four groups: (i) graphene, (ii) carbon nanotubes, (iii) activated carbon compounds and (iv) clays and polymer adsorbents as representatives in order to further study their desorption and regeneration abilities, using a variety of desorption media/eluants. The process conditions, such as pH, dose required, concentration, adsorption ability and the cost of the adsorbents were examined for further analysis. The recovery efficiency and ability to get reused through the desorption process was also evaluated. The highest adsorption capacity was observed for graphene-based adsorbents reaching between 108 and >480 mg/g, and for activated carbon materials ranging from 34 to >384 mg/g, whereas carbon nanotubes and polymer-based adsorbents indicated rather low and greatly varying adsorption capacities, between 1 and >138 mg/g and between 7 and >57 mg/g, respectively. Most of the reviewed cases appear to fit the pseudo-second order (PSO) kinetic model. These materials have demonstrated a removal effectiveness between 71% and 99%. Overall, all the aforementioned adsorbents share the advantage of being highly reusable.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Cinética , Nanotubos de Carbono/química , Contaminantes Químicos del Agua/análisis
8.
Nanomaterials (Basel) ; 11(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34685033

RESUMEN

Nanobubbles are classified into surface and bulk. The main difference between them is that the former is immobile, whereas the latter is mobile. The existence of sNBs has already been proven by atomic force microscopy, but the existence of bNBs is still open to discussion; there are strong indications, however, of its existence. The longevity of NBs is a long-standing problem. Theories as to the stability of sNBs reside on their immobile nature, whereas for bNBs, the landscape is not clear at the moment. In this preliminary communication, we explore the possibility of stabilizing a bNB by Brownian motion. It is shown that a fractal walk under specific conditions may leave the size of the bubble invariant.

9.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200903

RESUMEN

The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water as a competitive resource in many parts of the world [...].

10.
Molecules ; 26(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800797

RESUMEN

This review is an update about the addition of nanomaterials in cementitious composites in order to improve their performance. The most common used nanomaterials for cementitious materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and nanoTiO2. All these nanomaterials can improve the physical, mechanical, thermal and electrical properties of cementitious composites, for example increase their compressive and tensile strength, accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not effective. Nanomaterials can reinforce the nanoscale, which wasn't possible heretofore, enhancing the performance of the cementitious matrix.


Asunto(s)
Materiales de Construcción/análisis , Nanoestructuras/química
11.
Antibiotics (Basel) ; 10(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440860

RESUMEN

The aim of the present study is the synthesis of activated carbon (AC) from different agricultural wastes such as tea and plane tree leaves in order to use them for the removal of pramipexole dihydrochloride (PRM) from aqueous solutions. Two different carbonization and synthetic activation protocols were followed, with the herein-proposed ultrasound-assisted two-step protocol leading to better-performing carbon, especially for the tea-leaf-derived material (TEA(char)-AC). Physicochemical characterizations were performed by Fourier-transform infrared spectroscopy (FTIR), N2 physisorption, and scanning electron microscopy (SEM). TEA(char)-AC presented the highest surface area (1151 m2/g) and volume of micro and small mesopores. Maximum capacity was found at 112 mg/g for TEA(char)-AC at an optimum pH equal to 3, with the Langmuir isotherm model presenting a better fitting. The removal efficiency of TEA(char)-AC is higher than other biomass-derived carbons and closer to benchmark commercial carbons.

12.
Polymers (Basel) ; 13(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466449

RESUMEN

Water is a crucial point of interest nowadays due to its special management [...].

13.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354113

RESUMEN

Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.

14.
Carbohydr Polym ; 234: 115890, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070510

RESUMEN

A novel adsorbent material composed of chitosan (Cs), polyvinyl alcohol (PVA) and polyethylene glycol (PEG) was prepared in hydrogel bead form to efficiently remove copper ions from aqueous solutions. The properties of the composite were characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). The adsorption behavior of Cu(II) onto Cs/PVA/PEG beads was studied as a function of solution pH, temperature and contact time. The maximum adsorption was observed equal to 99.99 % for initial copper ion concentration of 25 mg/L at pH 5, temperature 45 °C, 5 h as contact time and 1 g/L of adsorbent dose. Langmuir isotherm and pseudo-second kinetic model fitted the experimental data sufficiently. Thermodynamic studies indicated that the process was spontaneous and endothermic. Cs/PVA/PEG beads can act as an effective adsorbent for the removal of Cu(II) from aqueous solution.

15.
Polymers (Basel) ; 11(5)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137821

RESUMEN

One of the most promising techniques of recent research is adsorption. This technique attracts great attention in environmental technology, especially in the decontamination of water and wastewaters. A "hidden" point of the above is the cost of adsorbents. As can be easily observed in the literature, there is not any mention about the synthesis cost of adsorbents. What are the basic criteria with which an industry can select an adsorbent? What is the synthesis (recipe) cost? What is the energy demand to synthesize an efficient material? All of these are questions which have not been answered, until now. The reason for this is that the estimation of adsorbents' cost is relatively difficult, because too many cost factors are involved (labor cost, raw materials cost, energy cost, tax cost, etc.). In this work, the first estimation cost of adsorbents is presented, taking into consideration all of the major factors which influence the final value. To be more comparable, the adsorbents used are from a list of polymeric materials which are already synthesized and tested in our laboratory. All of them are polymeric materials with chitosan as a substrate, which is efficiently used for the removal of heavy metal ions.

16.
Nanomaterials (Basel) ; 9(4)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013808

RESUMEN

This work briefly reviews the research milestones in the area of wood chemical modification, focusing on acetylated and furfurylated wood which have been scaled up, and exploits the solutions that nanotechnology can offer to wood protection as an alternative green innovative approach in improving key wood properties, namely the dimensional stability when subjected to a fluctuating moisture content and a susceptibility to biodegradability by microorganisms. Recently, nanomaterials were found to be able applicable in wood science. The target is to improve some special physicochemical characteristics of wood in order to resist extreme conditions (climate, bacteria, etc.), giving an enhanced potentiality. It is well-established that the wood cell wall shows a porosity of molecular scale dimensions; this is caused by the partial filling of spaces between the microfibrils of the cellulose mainly by polyoses and lignin. The small-sized nanoparticles can deeply and effectively penetrate into the wood, altering its surface chemistry, improving its properties, and therefore, resulting in a hyper-performance product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...