Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(14): 25195-25207, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237055

RESUMEN

We have been developing a light-weight X-ray telescope using micro electro mechanical systems technologies for future space missions. Micropores of 20 µm width are formed in a 4-inch Si wafer with deep reactive ion etching, and their sidewalls are used as X-ray reflection mirrors. The flatness of the sidewall is an important factor to determine the imaging performance, angular resolution. It is known that hydrogen annealing is effective to smooth a Si surface. We tested 150 hour annealing to achieve the ultimately smooth sidewalls. After 50 hour, 100 hour, and 150 hour annealing, the angular resolution improved 10.3, 4.0, and 2.6 arcmin in full width at half maximum (FWHM) and 17.0, 14.5, and 10.8 arcmin in half-power width (HPW). In spite of this improvement, the edge shapes of the sidewall were rounded. Therefore, both edges of the sidewall were ground and polished, and then the angular resolution was improved further to 3.2 arcmin (FWHM) and 5.4 arcmin (HPW).

2.
Appl Opt ; 58(19): 5240-5247, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503620

RESUMEN

Silicon micropore optics using deep reactive ion etching of silicon wafers has been being developed for future x-ray astronomy missions. Sidewalls of the micropores through a thin wafer with a typical thickness of hundreds of micrometers and a pore width of ∼20 µm are used for x-ray mirrors. However, burr structures observed after etching with a typical height of a few micrometers at the micropore edges are known to significantly reduce x-ray reflectivity. A new grinding and chemical mechanical polishing process is introduced to remove the burr structures. Both sides of the silicon wafer were ground and precisely polished after etching. X-ray reflectivity measurements confirmed an increase of reflectivity by 2-15 times at incident angles of 0.8-0.2 deg. The surface microroughness worsened from 2.0±0.2 nm rms to 7.8-0.8+0.6 nm rms; however, an additional annealing recovered the smooth surface and the estimated surface microroughness was <1.4 nm rms. This new process enables not only removing the burr structures but also choosing a flat part of the sidewalls for better angular resolution.

3.
Appl Opt ; 57(12): 3237-3243, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29714311

RESUMEN

We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al2O3∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 µm and 300 µm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31534985

RESUMEN

The Soft X-ray Spectrometer (SXS) instrument that flew on the Astro-H observatory was designed to perform imaging and spectroscopy of x-rays in the energy range of 0.2 to 13 keV with a resolution requirement of 7 eV or better. This was accomplished using a 6x6 array of x-ray microcalorimeters cooled to an operating temperature of 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consisted of three stages in order to operate using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. The design was based on the following operating strategy. After launch, while liquid helium was present (cryogen mode), two of the ADR's stages would be used to single-shot cool the detectors, using the helium as a heat sink. When the helium was eventually depleted (cryogen-free mode), all three ADR stages would be used to continuously cool the helium tank to about 1.5 K, and to single-shot cool the detectors (to 50 mK), using the JT cryocooler as a heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. Based on measurements during ground testing, the average heat load on the helium was projected to be 0.66 mW, giving a lifetime of more than 4 years. On day 5, the helium had cooled to <1.4 K and ADR operation began, successfully cooling the detector array to 50 mK. The ADR's hold time steadily increased to 48 hours as the helium cooled to a temperature of 1.12 K. As the commissioning phase progressed, the ADR was recycled (requiring approximately 45 minutes) periodically, either in preparation for science observations or whenever the 50 mK stage approached the end of its hold time. In total, 18 cycles were completed by the time an attitude control anomaly led to an unrecoverable failure of the satellite on day 38. This paper presents the design, operation and on-orbit performance of the ADR in cryogen mode as the foreshortened mission did not provide an opportunity to test cryogen-free mode.

5.
Appl Opt ; 52(24): 5949-56, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24084996

RESUMEN

To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 µm and depth of 300 µm. The film thickness is ∼20 nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1 nm rms is consistent with atomic force microscope measurements of the sidewalls.

6.
Opt Lett ; 37(5): 779-81, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22378391

RESUMEN

Large-aperture focusing of Al K(α) 1.49 keV x-ray photons using micropore optics made from a dry-etched 4 in. (100 mm) silicon wafer is demonstrated. Sidewalls of the micropores are smoothed with high-temperature annealing to work as x-ray mirrors. The wafer is bent to a spherical shape to collect parallel x rays into a focus. Our result supports that this new type of optics allows for the manufacturing of ultralight-weight and high-performance x-ray imaging optics with large apertures at low cost.

7.
Appl Opt ; 49(18): 3511-21, 2010 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-20563204

RESUMEN

X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

8.
Appl Opt ; 49(6): 1007-11, 2010 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-20174169

RESUMEN

The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K(alpha)0.28 keV and Al K(alpha)1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K(alpha) (approximately 6 nm rms) is significantly larger than approximately 1 nm at Al K(alpha). This can be explained by different coherent lengths at two energies.

9.
J Electron Microsc (Tokyo) ; 59(1): 17-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19717388

RESUMEN

A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system.

10.
Appl Opt ; 48(19): 3830-8, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571943

RESUMEN

In order to develop lightweight and high angular resolution x-ray mirrors, we have investigated hot plastic deformation of 4 in. silicon (111) wafers. A sample wafer was deformed using hemispherical dies with a curvature radius of 1000 mm. The measured radius of the deformed wafer was 1030 mm, suggesting that further conditioning is indispensable for better shaping. For the first time to our knowledge, x-ray reflection on a deformed wafer was detected at Al K(alpha) 1.49 keV. An estimated surface roughness of <1 nm from the x-ray reflection profile was comparable to that of a bare silicon wafer without deformation. Hence, no significant degradation of the microroughness was seen.

11.
Appl Opt ; 45(35): 8932-8, 2006 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-17119593

RESUMEN

To develop x-ray mirrors for micropore optics, smooth silicon (111) sidewalls obtained after anisotropic wet etching of a silicon (110) wafer were studied. A sample device with 19 microm wide (111) sidewalls was fabricated using a 220 microm thick silicon (110) wafer and potassium hydroxide solution. For what we believe to be the first time, x-ray reflection on the (111) sidewalls was detected in the angular response measurement. Compared to ray-tracing simulations, the surface roughness of the sidewalls was estimated to be 3-5 nm, which is consistent with the atomic force microscope and the surface profiler measurements.


Asunto(s)
Hidróxidos/química , Óptica y Fotónica , Compuestos de Potasio/química , Silicio/química , Rayos X , Anisotropía , Microscopía de Fuerza Atómica , Física/métodos , Dispersión de Radiación , Semiconductores , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA