Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Commun Biol ; 7(1): 567, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745046

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Carcinoma, Squamous Cell , Cell Movement , Mitochondria , Mouth Neoplasms , Receptors, Prostaglandin E, EP4 Subtype , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mitochondria/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Animals , Mice , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calmodulin/metabolism , Calmodulin/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
14.
Int J Comput Assist Radiol Surg ; 19(2): 303-308, 2024 Feb.
Article En | MEDLINE | ID: mdl-37466783

PURPOSE: Retrograde superselective intra-arterial chemoradiotherapy is a radical treatment for advanced oral cancer. The catheter tip is placed into tumor-feeding arteries-the lingual, facial, or maxillary arteries. The diameter of the tumor-feeding arteries newly bifurcated from the external carotid artery is crucial for determining the requirement of a catheter navigation system. This study aimed to measure the diameter and distribution of the tumor-feeding artery according to an objective protocol using 3D computed tomography angiography images reproducibly. METHODS: Angiographic data of 20 noncatheterized carotid arteriesof 10 randomly selected patients were analyzed. We followed the external carotid artery to the entrance of each feeding artery to determine the center point where the artery diameter was measured. The diameter of the optimum circle measured at the adopted center point was taken as the diameter of each tumor-feeding artery. RESULTS: The diameters (mean ± standard deviation) were 3.5 ± 0.45, 2.9 ± 0.56, and 3.5 ± 0.56 mm for the maxillary, lingual, and facial arteries, respectively. The diameters of the maxillary and facial arteries were similar (p = 0.877), whereas the diameter of the lingual artery was smaller than that of the maxillary and facial arteries (p < 0.001). CONCLUSION: The findings of this study will be beneficial in determining the need of a new catheter navigation system and diameter of catheters to be used in the clinical practice. From the viewpoint of measurement automation and reproducibility, 3DCTA vessel measurement taken according to the proposed protocol was considered to be effective.


Maxillary Artery , Neoplasms , Humans , Maxillary Artery/diagnostic imaging , Computed Tomography Angiography , Infusions, Intra-Arterial/methods , Reproducibility of Results , Carotid Arteries
15.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958605

The exact mechanisms by which implant surface properties govern osseointegration are incompletely understood. To gain insights into this process, we examined alterations in protein and blood recruitment around screw implants with different surface topographies and wettability using a computational fluid dynamics (CFD) model. Compared with a smooth surface, a microrough implant surface reduced protein infiltration from the outer zone to the implant thread and interface zones by over two-fold. However, the microrough implant surface slowed blood flow in the interface zone by four-fold. As a result, compared with the smooth surface, the microrough surface doubled the protein recruitment/retention index, defined as the mass of proteins present in the area per unit time. Converting implant surfaces from hydrophobic to superhydrophilic increased the mass of protein infiltration 2-3 times and slowed down blood flow by up to two-fold in the implant vicinity for both smooth and microrough surfaces. The protein recruitment/retention index was highest at the implant interface when the implant surface was superhydrophilic and microrough. Thus, this study demonstrates distinct control of the mass and speed of protein and blood flow through implant surface topography, wettability, and their combination, significantly altering the efficiency of protein recruitment. Although microrough surfaces showed both positive and negative impacts on protein recruitment over smooth surfaces, superhydrophilicity was consistently positive regardless of surface topography.


Dental Implants , Hydrodynamics , Wettability , Osseointegration/physiology , Surface Properties , Prostheses and Implants , Titanium/chemistry
16.
Br J Oral Maxillofac Surg ; 61(10): 659-665, 2023 Dec.
Article En | MEDLINE | ID: mdl-37863724

In-house repositioning methods based on three-dimensional (3D)-printing technology and the use of pre-bent plates has been gaining popularity in orthognathic surgery. However, there remains room for further improvement in methods and investigations on clinical factors that affect accuracy. This single-centre, prospective study included 34 patients and aimed to evaluate the accuracy and factors influencing maxillary and mandibular repositioning using pre-bent locking plates. The plates were manually pre-bent on the 3D-printed models of the planned position, and their hole positions were scanned and reproduced intraoperatively with osteotomy guides. The accuracy of repositioning and plate-hole positioning was calculated in three axes with the set landmarks. The following clinical factors that affect repositioning accuracy were also verified: deviation of the plate-hole positioning, amount of planned movement, and amount of simulated bony interference. The median deviations of the repositioning and hole positioning between the preoperative plan and postoperative results were 0.26 mm and 0.23 mm, respectively, in the maxilla, and 0.69 mm and 0.36 mm, respectively, in the mandible, suggesting that the method was highly accurate, and the repositioning concept based on the plate hole and form matching was more effective in the maxilla. Results of the correlation test suggest that large amounts of bony interference and plate-hole positioning errors in the up/down direction could reduce mandibular repositioning accuracy.


Orthognathic Surgical Procedures , Surgery, Computer-Assisted , Humans , Maxilla/surgery , Prospective Studies , Surgery, Computer-Assisted/methods , Mandible/diagnostic imaging , Mandible/surgery , Printing, Three-Dimensional , Orthognathic Surgical Procedures/methods
19.
Biomimetics (Basel) ; 8(4)2023 Aug 18.
Article En | MEDLINE | ID: mdl-37622981

The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.

20.
Anticancer Res ; 43(9): 3905-3911, 2023 Sep.
Article En | MEDLINE | ID: mdl-37648334

BACKGROUND/AIM: Cervical lymph node metastasis worsens oral cancer prognosis. Cancer cells with high metastatic ability can delay or resist apoptosis and survive in the floating condition during circulation. The involved genes and pathways in this process remain largely unknown. This study aimed to establish an oral cancer cell line adapted to suspension culture by in vitro selection and perform gene expression analysis. MATERIALS AND METHODS: The oral cancer cell subline adapted to suspension culture was isolated by in vitro selection from the oral cancer cell line, HSC-3. The transcriptome profiles of HSC-3 and its subline were compared using gene expression microarrays. Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Ingenuity Pathway Analysis (IPA) were performed to predict the involved pathways and molecules in cancer progression. RESULTS: The subline was designated as HSC-3S5 The cellular viability of HSC-3S5 cells at the suspension culture was higher than that of HSC-3 cells. A total of 961 genes were differentially expressed between HSC-3 and HSC-3S5 cells under the threshold cut-off (FDR-adjusted p-value of <0.05 and absolute fold change of >1.5). GO terms, such as growth regulation, were enriched in the DEGs. GSEA revealed the association between the DEGs and significant gene sets, including metastasis and stemness. IPA predicted that the proliferation-related pathways were enhanced while the apoptotic pathway was inhibited in HSC-3S5 cells compared to HSC-3 cells. CONCLUSION: Our transcriptome analysis revealed several potentially activated pathways and molecules in the floating-adapted oral cancer cells and indicated molecular implications for cancer progression.


Mouth Neoplasms , Transcriptome , Humans , Mouth Neoplasms/genetics , Gene Expression Profiling , Immunologic Tests , Apoptosis/genetics
...