Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38400140

RESUMEN

The nucleoprotein (NP) is a vital target for the heterosubtypic immunity of CD8+ cytotoxic T lymphocytes (CTLs) due to its conservation among influenza virus subtypes. To further enhance the T cell immunity of NP, autophagy-inducing peptide C5 (AIP-C5) from the CFP10 protein of Mycobacterium tuberculosis was used. Mice were immunized intranasally (i.n.) with human adenoviral vectors, HAd-C5-NP(H7N9) or HAd-NP(H7N9), expressing NP of an H7N9 influenza virus with or without the AIP-C5, respectively. Both vaccines developed similar levels of NP-specific systemic and mucosal antibody titers; however, there was a significantly higher number of NP-specific CD8 T cells secreting interferon-gamma (IFN-γ) in the HAd-C5-NP(H7N9) group than in the HAd-NP(H7N9) group. The HAd-C5-NP(H7N9) vaccine provided better protection following the challenge with A/Puerto Rico/8/1934(H1N1), A/Hong Kong/1/68(H3N2), A/chukkar/MN/14951-7/1998(H5N2), A/goose/Nebraska/17097/2011(H7N9), or A/Hong Kong/1073/1999(H9N2) influenza viruses compared to the HAd-NP(H7N9) group. The autophagy transcriptomic gene analysis of the HAd-C5-NP(H7N9) group revealed the upregulation of some genes involved in the positive regulation of the autophagy process. The results support further exploring the use of NP and AIP-C5 for developing a universal influenza vaccine for pandemic preparedness.

2.
Front Immunol ; 14: 1305937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077380

RESUMEN

Introduction: Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods: Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results: RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1ß, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1ß, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion: These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Animales , Bovinos , Ratones , Humanos , Inmunización , Inmunidad Adaptativa , Vacunación , Hemaglutininas
3.
Mol Ther Methods Clin Dev ; 30: 194-207, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37502665

RESUMEN

Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.

4.
Viruses ; 14(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36560730

RESUMEN

An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Humanos , Adenoviridae/genética , Terapia Genética , Vacunación , Transgenes , Vectores Genéticos/genética , Inmunidad Innata
5.
Viruses ; 14(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36016306

RESUMEN

Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Anticuerpos Antivirales , Humanos
6.
J Gen Virol ; 103(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262477

RESUMEN

The family Adenoviridae includes non-enveloped viruses with linear dsDNA genomes of 25-48 kb and medium-sized icosahedral capsids. Adenoviruses have been discovered in vertebrates from fish to humans. The family is divided into six genera, each of which is more common in certain animal groups. The outcome of infection may vary from subclinical to lethal disease. This is a summary of the ICTV Report on the family Adenoviridae, which is available at ictv.global/report/adenoviridae.


Asunto(s)
Adenoviridae , Vertebrados , Animales , Peces , Genoma Viral , Virión , Replicación Viral
7.
Clin Transl Immunology ; 10(10): e1345, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34667600

RESUMEN

Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.

8.
Cell Rep Med ; 2(8): 100372, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467249

RESUMEN

Although the BCG vaccine offers partial protection, tuberculosis remains a leading cause of infectious disease death, killing ∼1.5 million people annually. We developed mucosal vaccines expressing the autophagy-inducing peptide C5 and mycobacterial Ag85B-p25 epitope using replication-defective human adenovirus (HAdv85C5) and bovine adenovirus (BAdv85C5) vectors. BAdv85C5-infected dendritic cells (DCs) expressed a robust transcriptome of genes regulating antigen processing compared to HAdv85C5-infected DCs. BAdv85C5-infected DCs showed enhanced galectin-3/8 and autophagy-dependent in vitro Ag85B-p25 epitope presentation to CD4 T cells. BCG-vaccinated mice were intranasally boosted using HAdv85C5 or BAdv85C5 followed by infection using aerosolized Mycobacterium tuberculosis (Mtb). BAdv85C5 protected mice against tuberculosis both as a booster after BCG vaccine (>1.4-log10 reduction in Mtb lung burden) and as a single intranasal dose (>0.5-log10 reduction). Protection was associated with robust CD4 and CD8 effector (TEM), central memory (TCM), and CD103+/CD69+ lung-resident memory (TRM) T cell expansion, revealing BAdv85C5 as a promising mucosal vaccine for tuberculosis.


Asunto(s)
Adenoviridae/inmunología , Antígenos Bacterianos/inmunología , Membrana Mucosa/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas Sintéticas/inmunología , Animales , Autofagosomas/metabolismo , Vacuna BCG/inmunología , Catepsinas/metabolismo , Bovinos , Citocinas/metabolismo , Replicación del ADN , Células Dendríticas/inmunología , Femenino , Galectinas/metabolismo , Vectores Genéticos/metabolismo , Humanos , Memoria Inmunológica , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Transcriptoma/genética , Vacunación
9.
Mol Aspects Med ; 80: 101008, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34399986

RESUMEN

Innate Lymphoid Cells (ILCs) are a class of innate immune cells that form the first line of defense against internal or external abiotic and biotic challenges in the mammalian hosts. As they reside in both the lymphoid and non-lymphoid tissues, they are involved in clearing the pathogens through direct killing or by secretion of cytokines that modulate the adaptive immune responses. There is burgeoning evidence that these cells are important in clearing viral infections; therefore, it is critical to understand their role in the resolution or exacerbation of the disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this review, we summarize the recent findings related to ILCs in response to SARS-CoV-2 infections.


Asunto(s)
COVID-19/inmunología , Inmunidad Innata , Linfocitos/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/virología , Citocinas , Humanos
10.
Viruses ; 13(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34452358

RESUMEN

Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.


Asunto(s)
Adenoviridae/genética , Enfermedades Transmisibles/inmunología , Vectores Genéticos , Vacunas/genética , Vacunas/inmunología , Adenoviridae/clasificación , Adenoviridae/inmunología , Animales , Bovinos , Control de Enfermedades Transmisibles , Perros , Técnicas de Transferencia de Gen , Inmunidad Innata , Inmunización , Ratones
11.
Genes Chromosomes Cancer ; 60(11): 743-761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296799

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.


Asunto(s)
Carcinogénesis , Neurofibrosarcoma , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Neurofibrosarcoma/genética , Neurofibrosarcoma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
12.
Adv Sci (Weinh) ; 8(16): e2100693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34189857

RESUMEN

Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections.


Asunto(s)
Inmunidad Adaptativa/inmunología , Gripe Humana/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C
13.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019589

RESUMEN

Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine.

14.
Can J Vet Res ; 84(4): 314-318, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33012981

RESUMEN

Various types of human and nonhuman adenoviral (AdV) vectors are being used as gene delivery vectors in preclinical and clinical investigations. The objective of this study was to determine the ratio between the 2 best assays that would effectively address the variability in the titration of various AdV vectors in different cell lines and help obtain consistent results in preclinical and clinical studies using different AdV vectors. Here, we compared plaque-forming units, tissue culture infectious dose 50, focus-forming units (FFU), virus particle (VP) count, and genome copy number (GCN) of purified preparations of human AdV type C5, bovine AdV type 3, and porcine AdV type 3 to determine a correlation between infectious and noninfectious virus particles. Our results suggest that a VP:FFU or a VP:GCN ratio could accurately reflect the quality of an AdV preparation and could serve as an indicator to control batch-to-batch variability.


Différents types de vecteurs à adénovirus (AdV) humain et non-humain sont utilisés comme vecteurs de livraison de gènes dans des études pré-cliniques et cliniques. L'objectif de la présente étude était de déterminer le ratio entre les deux meilleurs essais qui examinerait la variabilité dans la titration des différents vecteurs AdV dans différentes lignées cellulaires et aiderait à obtenir des résultats fiables dans des études précliniques et cliniques utilisant différents vecteurs AdV. Nous avons comparé les unités formatrices de plaques, la dose infectieuse 50 pour la culture de tissu, les unités formatrices de focus (FFU), le dénombrement des particules virales (VP), et le nombre de copies du génome (GCN) de préparations purifiées d'AdV humain type C5, d'AdV bovin type 3, et d'AdV porcin type 3 afin de déterminer une corrélation entre les particules virales infectieuses et non-infectieuses. Nos résultats suggèrent qu'un ratio VP:FFU ou VP:GCN pourrait refléter avec précision la qualité d'une préparation d'AdV et pourrait servir d'indicateur pour vérifier la variabilité d'une production à l'autre.(Traduit par Docteur Serge Messier).


Asunto(s)
Adenoviridae/clasificación , Vectores Genéticos , Animales , Línea Celular , Terapia Genética/métodos , Humanos
15.
Genetics ; 215(4): 1067-1084, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32546498

RESUMEN

The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.


Asunto(s)
Aletas de Animales/fisiología , Animales Modificados Genéticamente/fisiología , Tipificación del Cuerpo , Electricidad , Regulación de la Expresión Génica , Canales de Potasio/metabolismo , Pez Cebra/fisiología , Animales , Fuentes de Energía Bioeléctrica , Células Epiteliales/metabolismo , Músculos/metabolismo , Canales de Potasio/genética , Somitos/metabolismo
16.
Cancers (Basel) ; 12(2)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053966

RESUMEN

The mechanisms that drive ductal carcinoma in situ (DCIS) progression to invasive cancer are not clear. Studying DCIS progression in humans is challenging and not ethical, thus necessitating the characterization of an animal model that faithfully resembles human disease. We have characterized a canine model of spontaneous mammary DCIS and invasive cancer that shares histologic, molecular, and diagnostic imaging characteristics with DCIS and invasive cancer in women. The purpose of the study was to identify markers and altered signaling pathways that lead to invasive cancer and shed light on early molecular events in breast cancer progression and development. Transcriptomic studies along the continuum of cancer progression in the mammary gland from healthy, through atypical ductal hyperplasia (ADH), DCIS, and invasive carcinoma were performed using the canine model. Gene expression profiles of preinvasive DCIS lesions closely resemble those of invasive carcinoma. However, certain genes, such as SFRP2, FZD2, STK31, and LALBA, were over-expressed in DCIS compared to invasive cancer. The over-representation of myoepithelial markers, epithelial-mesenchymal transition (EMT), canonical Wnt signaling components, and other pathways induced by Wnt family members distinguishes DCIS from invasive. The information gained may help in stratifying DCIS as well as identify actionable targets for primary and tertiary prevention or targeted therapy.

17.
Methods Mol Biol ; 1937: 155-175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30706395

RESUMEN

Various adenovirus (AdV) vector systems have proven to be lucrative options for gene delivery. They can serve as potential vaccine candidates for prevention of several common infectious diseases and hold the promise for gene therapy, especially for cancer. Several AdV vector-based therapies are currently at various stages of clinical trials worldwide, which make an immense interest of both the clinicians and researchers. Since these vectors are easy to manipulate, have broad tropism, and have the capability to yield high titers, this delivery system has a wide range of applications for different clinical settings. This chapter emphasizes on some of the current usages of AdV vectors and their production methods.


Asunto(s)
Adenoviridae/crecimiento & desarrollo , Vectores Genéticos/administración & dosificación , Cultivo de Virus/métodos , Adenoviridae/genética , Animales , Técnicas de Transferencia de Gen , Terapia Genética , Humanos
18.
Vaccine ; 36(45): 6744-6751, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30266488

RESUMEN

There is a high incidence of adenovirus (AdV) infection in humans due to the presence of more than 60 types of human adenoviruses (HAdVs). The majority of individuals are exposed to one or more HAdV types early in their lives, leading to the development of AdV type-specific neutralizing antibodies. Similarly, immunization or gene therapy with AdV vectors leads to immune responses to the AdV vector. This 'vector immunity' is a concern for AdV vector-based applications for vaccines or gene therapy, especially when the repeated administration of a vector is required. The objective of this investigation was to establish whether AdV neutralizing antibody titers decline sufficiently in a year to permit annual vaccination with the same AdV vector. Naïve or human adenoviral vector group C, type 5 (HAdV-C5)-primed mice were mock-inoculated (with PBS) or inoculated i.m. with 108 PFU of either HAd-GFP [HAdV-C5 vector expressing the green fluorescent protein (GFP)] to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 108 PFU of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza virus]. There was a significant continual decrease in vector immunity titers with time, thereby leading to significant continual increases in the levels of HA-specific humoral and cell-mediated immune responses. In addition, significant improvement in protection efficacy against challenge with an antigenically heterologous H5N1 virus was observed in HAdV-primed animals at 6 months and onwards. These results indicate that the annual immunization with the same AdV vector may be effective due to a significant decline in vector immunity.


Asunto(s)
Adenoviridae/genética , Vacunas contra la Influenza/inmunología , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Ratones , Ratones Endogámicos BALB C
19.
Mol Ther Methods Clin Dev ; 10: 210-222, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30101154

RESUMEN

Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) were developed as gene delivery vectors to supplement and/or elude human AdV (HAdV)-specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza virus in a dose escalation study in mice with the intranasal (IN) or intramuscular (IM) route of inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing HA of a H5N1 influenza virus. Dose-related increases in the immune responses were clearly noticeable. A single IM inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared with that of HAd-H5HA and conferred complete protection following challenge with a heterologous H5N1 virus at the dose of 3 × 107 plaque-forming units (PFUs), whereas a significant amount of influenza virus was detected in the lungs of mice immunized with 1 × 108 PFUs of HAd-H5HA. Similarly, compared with that of HAd-H5HA, a single IN inoculation with BAd-H5HA produced significantly enhanced humoral (HA-specific immunoglobulin [IgG] and its subclasses, as well as HA-specific IgA) and cellular immune responses, and conferred complete protection following challenge with a heterologous H5N1 virus. Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFUs), but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFUs). These results suggest that at least 30-fold dose sparing can be achieved with BAd-H5HA vector compared with HAd-H5HA vaccine vector.

20.
Oncotarget ; 9(34): 23494-23504, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29805750

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma with poor prognosis due to their complex genetic changes, invasive growth, and insensitivity to chemo- and radiotherapies. One of the most frequently lost chromosome arms in human MPNSTs is chromosome 9p. However, the cancer driver genes located on it remain largely unknown, except the tumor suppressor gene, p16 (INK4)/CDKN2A. Previously, we identified RECK as a tumor suppressor gene candidate on chromosome 9p using zebrafish-human comparative oncogenomics. In this study, we investigated the tumorigenesis of the reck gene using zebrafish genetic models in both tp53 and ribosomal protein gene mutation background. We also examined the biological effects of RECK gene restoration in human MPNST cell lines. These results provide the first genetic evidence that reck is a bona fide tumor suppressor gene for MPNSTs in zebrafish. In addition, restoration of the RECK gene in human MPNST cells leads to growth inhibition suggesting that the reactivation of RECK could serve as a potential therapeutic strategy for MPNSTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...