Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
PLoS Pathog ; 20(3): e1012069, 2024 Mar.
Article En | MEDLINE | ID: mdl-38452145

Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.


Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Humans , Animals , Mice , BCG Vaccine/genetics , Tuberculosis/genetics , Tuberculosis/prevention & control , Tuberculosis/microbiology , Tuberculosis Vaccines/genetics , Vaccination , Genetic Loci , Cytokines/genetics , Antigens, Bacterial
2.
Infect Immun ; 91(7): e0016823, 2023 07 18.
Article En | MEDLINE | ID: mdl-37338410

Tuberculosis is still the leading cause of death globally from any infectious disease, despite the widespread use of the live attenuated vaccine Bacille Calmette Guerin (BCG). While BCG has some efficacy against disseminated TB disease in children, protection wanes into adulthood resulting in over 1.8 million TB deaths per year. This has led to efforts to develop novel vaccine candidates that either replace or boost BCG, as well as to test novel delivery mechanisms to enhance BCG's efficacy. Traditional BCG vaccination is performed as an intradermal (ID) injection but delivering BCG by an alternate route may enhance the depth and breadth of protection. Previously, we demonstrated that phenotypically and genotypically disparate Diversity Outbred (DO) mice have heterogenous responses to M. tuberculosis challenge following intradermal BCG vaccination. Here, we utilize DO mice to examine BCG-induced protection when BCG is delivered systemically via intravenous (IV) administration. We find that DO mice vaccinated with IV BCG had a greater distribution of BCG throughout their organs compared to ID-vaccinated animals. However, compared to ID-vaccinated mice, M. tuberculosis burdens in lungs and spleens were not significantly reduced in animals vaccinated with BCG IV, nor was lung inflammation significantly altered. Nonetheless, DO mice that received BCG IV had increased survival over those vaccinated by the traditional ID route. Thus, our results suggest that delivering BCG by the alternate IV route enhances protection as detected in this diverse small animal model.


Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , BCG Vaccine , Collaborative Cross Mice , Tuberculosis/prevention & control , Vaccination
3.
mBio ; 14(2): e0035323, 2023 04 25.
Article En | MEDLINE | ID: mdl-36877010

Antituberculosis therapy (ATT) causes a rapid and distinct alteration in the composition of the intestinal microbiota that is long lasting in both mice and humans. This observation raised the question of whether such antibiotic-induced changes in the microbiome might affect the absorption or gut metabolism of the tuberculosis (TB) drugs themselves. To address this issue, we utilized a murine model of antibiotic-induced dysbiosis to assay the bioavailability of rifampicin, moxifloxacin, pyrazinamide, and isoniazid in mouse plasma over a period of 12 h following individual oral administration. We found that 4-week pretreatment with a regimen of isoniazid, rifampicin, and pyrazinamide (HRZ), a drug combination used clinically for ATT, failed to reduce the exposure of any of the four antibiotics assayed. Nevertheless, mice that received a pretreatment cocktail of the broad-spectrum antibiotics vancomycin, ampicllin, neomycin, and metronidazole (VANM), which are known to deplete the intestinal microbiota, displayed a significant decrease in the plasma concentration of rifampicin and moxifloxacin during the assay period, an observation that was validated in germfree animals. In contrast, no major effects were observed when similarly pretreated mice were exposed to pyrazinamide or isoniazid. Thus, the data from this animal model study indicate that the dysbiosis induced by HRZ does not reduce the bioavailability of the drugs themselves. Nevertheless, our observations suggest that more extreme alterations of the microbiota, such as those occurring in patients on broad-spectrum antibiotics, could directly or indirectly affect the exposure of important TB drugs and thereby potentially influencing treatment outcome. IMPORTANCE Previous studies have shown that treatment of Mycobacterium tuberculosis infection with first-line antibiotics results in a long-lasting disruption of the host microbiota. Since the microbiome has been shown to influence the host availability of other drugs, we employed a mouse model to ask whether the dysbiosis resulting from either tuberculosis (TB) chemotherapy or a more aggressive course of broad-spectrum antibiotics might influence the pharmacokinetics of the TB antibiotics themselves. While drug exposure was not reduced in animals previously described as exhibiting the dysbiosis triggered by conventional TB chemotherapy, we found that mice with other alterations in the microbiome, such as those triggered by more intensive antibiotic treatment, displayed decreased availability of rifampicin and moxifloxacin, which in turn could impact their efficacy. The above findings are relevant not only to TB but also to other bacterial infections treated with these two broader spectrum antibiotics.


Antitubercular Agents , Tuberculosis , Humans , Animals , Mice , Antitubercular Agents/therapeutic use , Rifampin/therapeutic use , Isoniazid/therapeutic use , Pyrazinamide/therapeutic use , Biological Availability , Moxifloxacin/therapeutic use , Dysbiosis/etiology , Tuberculosis/microbiology
4.
PLoS One ; 18(3): e0283161, 2023.
Article En | MEDLINE | ID: mdl-36972230

IL-12p40 plays an important role in F. tularensis Live Vaccine Strain (LVS) clearance that is independent of its functions as a part of the heterodimeric cytokines IL-12p70 or IL-23. In contrast to WT, p35, or p19 knockout (KO) mice, p40 KO mice infected with LVS develop a chronic infection that does not resolve. Here, we further evaluated the role of IL-12p40 in F. tularensis clearance. Despite reduced IFN-γ production, primed splenocytes from p40 KO and p35 KO mice appeared functionally similar to those from WT mice during in vitro co-culture assays of intramacrophage bacterial growth control. Gene expression analysis revealed a subset of genes that were upregulated in re-stimulated WT and p35 KO splenocytes, but not p40 KO splenocytes, and thus are candidates for involvement in F. tularensis clearance. To directly evaluate a potential mechanism for p40 in F. tularensis clearance, we reconstituted protein levels in LVS-infected p40 KO mice using either intermittent injections of p40 homodimer (p80) or treatment with a p40-producing lentivirus construct. Although both delivery strategies yielded readily detectable levels of p40 in sera and spleens, neither treatment had a measurable impact on LVS clearance by p40 KO mice. Taken together, these studies demonstrate that clearance of F. tularensis infection depends on p40, but p40 monomers and/or dimers alone are not sufficient.


Interleukin-12 Subunit p40 , Tularemia , Animals , Mice , Bacterial Vaccines , Cytokines/metabolism , Francisella tularensis , Interleukin-12/metabolism , Interleukin-12 Subunit p40/metabolism , Mice, Inbred C57BL , Mice, Knockout , Tularemia/immunology
5.
Front Cell Infect Microbiol ; 12: 862582, 2022.
Article En | MEDLINE | ID: mdl-35586249

Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.


Hydro-Lyases , Macrophages , Membrane Proteins , Mycobacterium tuberculosis , Receptor, Interferon alpha-beta , Toll-Like Receptor 2 , Adaptor Proteins, Signal Transducing/metabolism , Animals , Enzyme Induction , Hydro-Lyases/biosynthesis , Hydro-Lyases/immunology , Macrophages/immunology , Macrophages/microbiology , Membrane Proteins/metabolism , Mice , Mycobacterium tuberculosis/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Phagocytosis , Receptor, Interferon alpha-beta/metabolism , Toll-Like Receptor 2/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
6.
Front Cell Infect Microbiol ; 11: 672527, 2021.
Article En | MEDLINE | ID: mdl-34235093

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains a major public health problem worldwide due in part to the lack of an effective vaccine and to the lengthy course of antibiotic treatment required for successful cure. Combined immuno/chemotherapeutic intervention represents a major strategy for developing more effective therapies against this important pathogen. Because of the major role of CD4+ T cells in containing Mtb infection, augmentation of bacterial specific CD4+ T cell responses has been considered as an approach in achieving this aim. Here we present new data from our own research aimed at determining whether boosting CD4+ T cell responses can promote antibiotic clearance. In these studies, we first characterized the impact of antibiotic treatment of infected mice on Th1 responses to major Mtb antigens and then performed experiments aimed at sustaining CD4+ T cell responsiveness during antibiotic treatment. These included IL-12 infusion, immunization with ESAT-6 and Ag85B immunodominant peptides and adoptive transfer of Th1-polarized CD4+ T cells specific for ESAT-6 or Ag85B during the initial month of chemotherapy. These approaches failed to enhance antibiotic clearance of Mtb, indicating that boosting Th1 responses to immunogenic Mtb antigens highly expressed by actively dividing bacteria is not an effective strategy to be used in the initial phase of antibiotic treatment, perhaps because replicating organisms are the first to be eliminated by the drugs. These results are discussed in the context of previously published findings addressing this concept along with possible alternate approaches for harnessing Th1 immunity as an adjunct to chemotherapy.


Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Anti-Bacterial Agents/therapeutic use , Antigens, Bacterial , Bacterial Proteins , CD4-Positive T-Lymphocytes , Mice , Tuberculosis/drug therapy
7.
J Immunol ; 206(7): 1642-1652, 2021 04 01.
Article En | MEDLINE | ID: mdl-33627376

Human primary monocytes are composed of a minor, more mature CD16+(CD14low/neg) population and a major CD16neg(CD14+) subset. The specific functions of CD16+ versus CD16neg monocytes in steady state or inflammation remain poorly understood. In previous work, we found that IL-12 is selectively produced by the CD16+ subset in response to the protozoan pathogen, Toxoplasma gondii In this study, we demonstrated that this differential responsiveness correlates with the presence of an IFN-induced transcriptional signature in CD16+ monocytes already at baseline. Consistent with this observation, we found that in vitro IFN-γ priming overcomes the defect in the IL-12 response of the CD16neg subset. In contrast, pretreatment with IFN-γ had only a minor effect on IL-12p40 secretion by the CD16+ population. Moreover, inhibition of the mTOR pathway also selectively increased the IL-12 response in CD16neg but not in CD16+ monocytes. We further demonstrate that in contrast to IFN-γ, IFN-α fails to promote IL-12 production by the CD16neg subset and blocks the effect of IFN-γ priming. Based on these observations, we propose that the acquisition of IL-12 responsiveness by peripheral blood monocyte subsets depends on extrinsic signals experienced during their developmental progression in vivo. This process can be overridden during inflammation by the opposing regulatory effects of type I and II IFN as well as the mTOR inhibition.


Inflammation/immunology , Interleukin-12 Subunit p40/metabolism , Monocytes/immunology , Toxoplasma/physiology , Toxoplasmosis/immunology , Cell Differentiation , Cells, Cultured , Humans , Interferon-gamma/metabolism , Lipopolysaccharide Receptors/metabolism , Primary Cell Culture , Receptors, IgG/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transcriptome
8.
Mucosal Immunol ; 14(1): 253-266, 2021 01.
Article En | MEDLINE | ID: mdl-32862202

Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.


Heme Oxygenase-1/antagonists & inhibitors , Host-Pathogen Interactions , Interferon-gamma/metabolism , Mycobacterium tuberculosis , Nitric Oxide Synthase Type II/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology , Animals , Bacterial Load , Host-Pathogen Interactions/immunology , Iron/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Models, Biological , Mycobacterium tuberculosis/immunology , Nitric Oxide/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tuberculosis/immunology
9.
PLoS One ; 15(8): e0237034, 2020.
Article En | MEDLINE | ID: mdl-32745117

Production of IFN-γ is a key innate immune mechanism that limits replication of intracellular bacteria such as Francisella tularensis (Ft) until adaptive immune responses develop. Previously, we demonstrated that the host cell types responsible for IFN-γ production in response to murine Francisella infection include not only natural killer (NK) and T cells, but also a variety of myeloid cells. However, production of IFN-γ by mouse dendritic cells (DC) is controversial. Here, we directly demonstrated substantial production of IFN-γ by DC, as well as hybrid NK-DC, from LVS-infected wild type C57BL/6 or Rag1 knockout mice. We demonstrated that the numbers of conventional DC producing IFN-γ increased progressively over the course of 8 days of LVS infection. In contrast, the numbers of conventional NK cells producing IFN-γ, which represented about 40% of non-B/T IFN-γ-producing cells, peaked at day 4 after LVS infection and declined thereafter. This pattern was similar to that of hybrid NK-DC. To further confirm IFN-γ production by infected cells, DC and neutrophils were sorted from naïve and LVS-infected mice and analyzed for gene expression. Quantification of LVS by PCR revealed the presence of Ft DNA not only in macrophages, but also in highly purified, IFN-γ producing DC and neutrophils. Finally, production of IFN-γ by infected DC was confirmed by immunohistochemistry and confocal microscopy. Notably, IFN-γ production patterns similar to those in wild type mice were observed in cells derived from LVS-infected TLR2, TLR4, and TLR2xTLR9 knockout (KO) mice, but not from MyD88 KO mice. Taken together, these studies demonstrate the pivotal roles of DC and MyD88 in IFN-γ production and in initiating innate immune responses to this intracellular bacterium.


Interferon-gamma/metabolism , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Francisella tularensis/immunology , Immunity, Innate/immunology , Killer Cells, Natural/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Neutrophils/metabolism , Spleen/metabolism , T-Lymphocytes/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptors/immunology , Tularemia/microbiology
10.
mBio ; 10(3)2019 06 04.
Article En | MEDLINE | ID: mdl-31164469

The factors that determine host susceptibility to tuberculosis (TB) are poorly defined. The microbiota has been identified as a key influence on the nutritional, metabolic, and immunological status of the host, although its role in the pathogenesis of TB is currently unclear. Here, we investigated the influence of Mycobacterium tuberculosis exposure on the microbiome and conversely the impact of the intestinal microbiome on the outcome of M. tuberculosis exposure in a rhesus macaque model of tuberculosis. Animals were infected with different strains and doses of M. tuberculosis in three independent experiments, resulting in a range of disease severities. The compositions of the microbiotas were then assessed using a combination of 16S rRNA and metagenomic sequencing in fecal samples collected pre- and postinfection. Clustering analyses of the microbiota compositions revealed that alterations in the microbiome after M. tuberculosis infection were of much lower magnitude than the variability seen between individual monkeys. However, the microbiomes of macaques that developed severe disease were noticeably distinct from those of the animals with less severe disease as well as from each other. In particular, the bacterial families Lachnospiraceae and Clostridiaceae were enriched in monkeys that were more susceptible to infection, while numbers of Streptococcaceae were decreased. These findings in infected nonhuman primates reveal that certain baseline microbiome communities may strongly associate with the development of severe tuberculosis following infection and can be more important disease correlates than alterations to the microbiota following M. tuberculosis infection itself.IMPORTANCE Why some but not all individuals infected with Mycobacterium tuberculosis develop disease is poorly understood. Previous studies have revealed an important influence of the microbiota on host resistance to infection with a number of different disease agents. Here, we investigated the possible role of the individual's microbiome in impacting the outcome of M. tuberculosis infection in rhesus monkeys experimentally exposed to this important human pathogen. Although M. tuberculosis infection itself caused only minor alterations in the composition of the gut microbiota in these animals, we observed a significant correlation between an individual monkey's microbiome and the severity of pulmonary disease. More importantly, this correlation between microbiota structure and disease outcome was evident even prior to infection. Taken together, our findings suggest that the composition of the microbiome may be a useful predictor of tuberculosis progression in infected individuals either directly because of the microbiome's direct influence on host resistance or indirectly because of its association with other host factors that have this influence. This calls for exploration of the potential of the microbiota composition as a predictive biomarker through carefully designed prospective studies.


Disease Susceptibility/microbiology , Gastrointestinal Microbiome , Tuberculosis/microbiology , Animals , Dysbiosis/microbiology , Female , Macaca mulatta/microbiology , Male , Metagenomics , Mycobacterium tuberculosis/pathogenicity , Prospective Studies , RNA, Ribosomal, 16S/genetics
11.
J Exp Med ; 216(3): 556-570, 2019 03 04.
Article En | MEDLINE | ID: mdl-30787033

Necrotic cell death during Mycobacterium tuberculosis (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis. Moreover, necrotic cell death in Mtb-infected macrophage cultures was suppressed by ferrostatin-1 (Fer-1), a well-characterized ferroptosis inhibitor, as well as by iron chelation. Additional experiments in vivo revealed that pulmonary necrosis in acutely infected mice is associated with reduced Gpx4 expression as well as increased lipid peroxidation and is likewise suppressed by Fer-1 treatment. Importantly, Fer-1-treated infected animals also exhibited marked reductions in bacterial load. Together, these findings implicate ferroptosis as a major mechanism of necrosis in Mtb infection and as a target for host-directed therapy of tuberculosis.


Ferroptosis/physiology , Iron/metabolism , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/pathology , Animals , Cell Death , Cells, Cultured , Ferroptosis/drug effects , Glutathione/metabolism , Host-Pathogen Interactions , Humans , Iron Chelating Agents/pharmacology , Lipid Peroxidation , Macrophages/drug effects , Macrophages/microbiology , Macrophages/pathology , Male , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
12.
PLoS One ; 13(5): e0198140, 2018.
Article En | MEDLINE | ID: mdl-29799870

There are no defined correlates of protection for any intracellular pathogen, including the bacterium Francisella tularensis, which causes tularemia. Evaluating vaccine efficacy against sporadic diseases like tularemia using field trials is problematic, and therefore alternative strategies to test vaccine candidates like the Francisella Live Vaccine Strain (LVS), such as testing in animals and applying correlate measurements, are needed. Recently, we described a promising correlate strategy that predicted the degree of vaccine-induced protection in mice given parenteral challenges, primarily when using an attenuated Francisella strain. Here, we demonstrate that using peripheral blood lymphocytes (PBLs) in this approach predicts LVS-mediated protection against respiratory challenge of Fischer 344 rats with fully virulent F. tularensis, with exceptional sensitivity and specificity. Rats were vaccinated with a panel of LVS-derived vaccines and subsequently given lethal respiratory challenges with Type A F. tularensis. In parallel, PBLs from vaccinated rats were evaluated for their functional ability to control intramacrophage Francisella growth in in vitro co-culture assays. PBLs recovered from co-cultures were also evaluated for relative gene expression using a large panel of genes identified in murine studies. In vitro control of LVS intramacrophage replication reflected the hierarchy of protection. Further, despite variability between individuals, 22 genes were significantly more up-regulated in PBLs from rats vaccinated with LVS compared to those from rats vaccinated with the variant LVS-R or heat-killed LVS, which were poorly protective. These genes included IFN-γ, IL-21, NOS2, LTA, T-bet, IL-12rß2, and CCL5. Most importantly, combining quantifications of intramacrophage growth control with 5-7 gene expression levels using multivariate analyses discriminated protected from non-protected individuals with greater than 95% sensitivity and specificity. The results therefore support translation of this approach to non-human primates and people to evaluate new vaccines against Francisella and other intracellular pathogens.


Bacterial Vaccines/immunology , Francisella tularensis/immunology , Francisella tularensis/pathogenicity , Immunization , Respiratory System/microbiology , Animals , Female , Gene Expression Regulation/immunology , Immunity, Humoral/immunology , Macrophages/microbiology , Multivariate Analysis , Rats , T-Lymphocytes/immunology , Virulence
13.
Microbiome ; 5(1): 71, 2017 07 07.
Article En | MEDLINE | ID: mdl-28683818

BACKGROUND: Effective treatment of Mycobacterium tuberculosis (Mtb) infection requires at least 6 months of daily therapy with multiple orally administered antibiotics. Although this drug regimen is administered annually to millions worldwide, the impact of such intensive antimicrobial treatment on the host microbiome has never been formally investigated. Here, we characterized the longitudinal outcome of conventional isoniazid-rifampin-pyrazinamide (HRZ) TB drug administration on the diversity and composition of the intestinal microbiota in Mtb-infected mice by means of 16S rRNA sequencing. We also investigated the effects of each of the individual antibiotics alone and in different combinations. RESULTS: While inducing only a transient decrease in microbial diversity, HRZ treatment triggered a marked, immediate and reproducible alteration in community structure that persisted for the entire course of therapy and for at least 3 months following its cessation. Members of order Clostridiales were among the taxa that decreased in relative frequencies during treatment and family Porphyromonadaceae significantly increased post treatment. Experiments comparing monotherapy and different combination therapies identified rifampin as the major driver of the observed alterations induced by the HRZ cocktail but also revealed unexpected effects of isoniazid and pyrazinamide in certain drug pairings. CONCLUSIONS: This report provides the first detailed analysis of the longitudinal changes in the intestinal microbiota due to anti-tuberculosis therapy. Importantly, many of the affected taxa have been previously shown in other systems to be associated with modifications in immunologic function. Together, our findings reveal that the antibiotics used in conventional TB treatment induce a distinct and long lasting dysbiosis. In addition, they establish a murine model for studying the potential impact of this dysbiosis on host resistance and physiology.


Antitubercular Agents/adverse effects , Dysbiosis/etiology , Gastrointestinal Microbiome/drug effects , Intestines/pathology , Isoniazid/adverse effects , Pyrazinamide/adverse effects , Rifampin/adverse effects , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/therapeutic use , Clostridiales/genetics , Clostridiales/isolation & purification , Drug Combinations , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Isoniazid/administration & dosage , Isoniazid/therapeutic use , Mice , Mycobacterium tuberculosis/drug effects , Porphyromonas/genetics , Porphyromonas/isolation & purification , Pyrazinamide/administration & dosage , Pyrazinamide/therapeutic use , RNA, Ribosomal, 16S , Rifampin/administration & dosage , Rifampin/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
14.
mBio ; 7(5)2016 10 25.
Article En | MEDLINE | ID: mdl-27795400

Heme oxygenase-1 (HO-1) is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX), a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function. IMPORTANCE: There is no reliable vaccine against tuberculosis (TB), and conventional antibiotic therapy is administered over at least 6 months. This prolonged treatment period can lead to noncompliance resulting in relapsed infection as well as the emergence of multidrug resistance. Thus, there is an urgent need for improved therapeutic regimens that can more rapidly and efficiently control M. tuberculosis in infected patients. Here, we describe a potential strategy for treating TB based on pharmacological inhibition of the host heme-degrading enzyme HO-1. This approach results in significantly reduced bacterial burdens in mice, and when administered in conjunction with conventional antibiotic therapy, leads to faster, more effective pathogen clearance without detectable direct effects on the mycobacteria themselves. Interestingly, the effects of HO-1 inhibition on M. tuberculosis infection in vivo are dependent on the presence of an intact host immune system. These observations establish mammalian HO-1 as a potential target for host-directed therapy of TB.


Enzyme Inhibitors/administration & dosage , Heme Oxygenase-1/antagonists & inhibitors , Immunologic Factors/administration & dosage , Metalloporphyrins/administration & dosage , Mycobacterium tuberculosis/immunology , Protoporphyrins/administration & dosage , T-Lymphocytes/immunology , Tuberculosis/drug therapy , Animals , Bacterial Load , Disease Models, Animal , Lung/microbiology , Lung/pathology , Mice , Treatment Outcome , Tuberculosis/immunology
15.
J Immunol ; 197(10): 3884-3893, 2016 11 15.
Article En | MEDLINE | ID: mdl-27798160

T follicular helper (Tfh) cells are a subset of CD4+ T lymphocytes that promote the development of humoral immunity. Although the triggers required for the differentiation of the other major Th subsets are well defined, those responsible for Tfh cell responses are still poorly understood. We determined that mice immunized with peptide or protein Ags emulsified in IFA or related water-in-oil adjuvants develop a highly polarized response in which the majority of the Ag-specific CD4+ T cells are germinal center-homing CXCR5+Bcl6+ Tfh cells. Despite the absence of exogenous microbial pathogen-associated molecular patterns, the Tfh cell responses observed were dependent, in part, on MyD88. Importantly, in addition to IL-6, T cell-intrinsic type I IFN signaling is required for optimal Tfh cell polarization. These findings suggest that water-in-oil adjuvants promote Tfh cell-dominated responses by triggering endogenous alarm signals that, in turn, induce type I IFN-dependent differentiation pathway functioning in T cells.


Adjuvants, Immunologic/chemistry , Interferon Type I/metabolism , Interleukin-6/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens/immunology , Cell Differentiation , Germinal Center/immunology , Immunity, Humoral , Immunization , Interferon Type I/immunology , Interleukin-6/immunology , Lymphocyte Activation , Mice , Oils , Peptides/immunology , Receptors, CXCR5/metabolism , Signal Transduction , Water
16.
Infect Immun ; 84(4): 1054-1061, 2016 Apr.
Article En | MEDLINE | ID: mdl-26810039

We previously identified potential correlates of vaccine-induced protection against Francisella tularensis using murine splenocytes and further demonstrated that the relative levels of gene expression varied significantly between tissues. In contrast to splenocytes, peripheral blood leukocytes (PBLs) represent a means to bridge vaccine efficacy in animal models to that in humans. Here we take advantage of this easily accessible source of immune cells to investigate cell-mediated immune responses against tularemia, whose sporadic incidence makes clinical trials of vaccines difficult. Using PBLs from mice vaccinated with F. tularensis Live Vaccine Strain (LVS) and related attenuated strains, we combined the control of in vitro Francisella replication within macrophages with gene expression analyses. The in vitro functions of PBLs, particularly the control of intramacrophage LVS replication, reflected the hierarchy of in vivo protection conferred by LVS-derived vaccines. Moreover, several genes previously identified by the evaluation of splenocytes were also found to be differentially expressed in immune PBLs. In addition, more extensive screening identified additional potential correlates of protection. Finally, expression of selected genes in mouse PBLs obtained shortly after vaccination, without ex vivo restimulation, was different among vaccine groups, suggesting a potential tool to monitor efficacious vaccine-induced immune responses against F. tularensis. Our studies demonstrate that murine PBLs can be used productively to identify potential correlates of protection against F. tularensis and to expand and refine a comprehensive set of protective correlates.


Bacterial Vaccines/immunology , Francisella tularensis/immunology , Lymphocytes/metabolism , Tularemia/prevention & control , Animals , Coculture Techniques , Gene Expression Regulation , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL , Protein Array Analysis , Proteins/genetics , Proteins/metabolism , Spleen/cytology
17.
J Immunol ; 196(1): 345-56, 2016 Jan 01.
Article En | MEDLINE | ID: mdl-26597011

As a major natural host for Toxoplasma gondii, the mouse is widely used for the study of the immune response to this medically important protozoan parasite. However, murine innate recognition of toxoplasma depends on the interaction of parasite profilin with TLR11 and TLR12, two receptors that are functionally absent in humans. This raises the question of how human cells detect and respond to T. gondii. In this study, we show that primary monocytes and dendritic cells from peripheral blood of healthy donors produce IL-12 and other proinflammatory cytokines when exposed to toxoplasma tachyzoites. Cell fractionation studies determined that IL-12 and TNF-α secretion is limited to CD16(+) monocytes and the CD1c(+) subset of dendritic cells. In direct contrast to their murine counterparts, human myeloid cells fail to respond to soluble tachyzoite extracts and instead require contact with live parasites. Importantly, we found that tachyzoite phagocytosis, but not host cell invasion, is required for cytokine induction. Together these findings identify CD16(+) monocytes and CD1c(+) dendritic cells as the major myeloid subsets in human blood-producing innate cytokines in response to T. gondii and demonstrate an unappreciated requirement for phagocytosis of live parasites in that process. This form of pathogen sensing is distinct from that used by mice, possibly reflecting a direct involvement of rodents and not humans in the parasite life cycle.


Dendritic Cells/immunology , Interleukin-12/immunology , Monocytes/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Antigens, CD1/metabolism , Cells, Cultured , Female , GPI-Linked Proteins/metabolism , Glycoproteins/metabolism , Humans , Male , Phagocytosis/immunology , Receptors, IgG/metabolism , Signal Transduction/immunology , Toxoplasmosis/parasitology , Tumor Necrosis Factor-alpha/immunology
18.
PLoS One ; 10(5): e0126570, 2015.
Article En | MEDLINE | ID: mdl-25973794

In the last decade several new vaccines against Francisella tularensis, which causes tularemia, have been characterized in animal models. Whereas many of these vaccine candidates showed promise, it remains critical to bridge the preclinical studies to human subjects, ideally by taking advantage of correlates of protection. By combining in vitro intramacrophage LVS replication with gene expression data through multivariate analysis, we previously identified and quantified correlative T cell immune responses that discriminate vaccines of different efficacy. Further, using C57BL/6J mice, we demonstrated that the relative levels of gene expression vary according to vaccination route and between cell types from different organs. Here, we extended our studies to the analysis of T cell functions of BALB/cByJ mice to evaluate whether our approach to identify correlates of protection also applies to a Th2 dominant mouse strain. BALB/cByJ mice had higher survival rates than C57BL/6J mice when they were immunized with suboptimal vaccines and challenged. However, splenocytes derived from differentially vaccinated BALB/cByJ mice controlled LVS intramacrophage replication in vitro in a pattern that reflected the hierarchy of protection observed in C57BL/6J mice. In addition, gene expression of selected potential correlates revealed similar patterns in splenocytes of BALB/cByJ and C57BL/6J mice. The different survival patterns were related to B cell functions, not necessarily to specific antibody production, which played an important protective role in BALB/cByJ mice when vaccinated with suboptimal vaccines. Our studies therefore demonstrate the range of mechanisms that operate in the most common mouse strains used for characterization of vaccines against F. tularensis, and illustrate the complexity necessary to define a comprehensive set of correlates.


B-Lymphocytes/immunology , Bacterial Vaccines/pharmacology , Francisella tularensis/immunology , T-Lymphocytes/immunology , Tularemia/immunology , Tularemia/prevention & control , Animals , Bacterial Vaccines/immunology , Immunity, Cellular , Immunity, Humoral , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccination
19.
Breast Cancer Res ; 14(4): R109, 2012 Jul 19.
Article En | MEDLINE | ID: mdl-22812567

INTRODUCTION: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is diagnosed in approximately 15% of all human breast cancer (BrCa) patients. Currently, no targeted therapies exist for this subtype of BrCa and prognosis remains poor. Our laboratory has previously identified a proliferation/DNA repair/cell cycle gene signature (Tag signature) that is characteristic of human TNBC. We hypothesize that targeting the dysregulated biological networks in the Tag gene signature will lead to the identification of improved combination therapies for TNBC. METHODS: Cross-species genomic analysis was used to identify human breast cancer cell lines that express the Tag signature. Knock-down of the up-regulated genes in the Tag signature by siRNA identified several genes that are critical for TNBC cell growth. Small molecule inhibitors to two of these genes were analyzed, alone and in combination, for their effects on cell proliferation, cell cycle, and apoptosis in vitro and tumor growth in vivo. Synergy between the two drugs was analyzed by the Chou-Talalay method. RESULTS: A custom siRNA screen was used to identify targets within the Tag signature that are critical for growth of TNBC cells. Ribonucleotide reductase 1 and 2 (RRM1 and 2) and checkpoint kinase 1 (CHK1) were found to be critical targets for TNBC cell survival. Combination therapy, to simultaneously attenuate cell cycle checkpoint control through inhibition of CHK1 while inducing DNA damage with gemcitabine, improved therapeutic efficacy in vitro and in xenograft models of TNBC. CONCLUSIONS: This combination therapy may have translational value for patients with TNBC and improve therapeutic response for this aggressive form of breast cancer.


Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Triple Negative Breast Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Checkpoint Kinase 1 , Cluster Analysis , DNA Damage/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Inhibitory Concentration 50 , Mice , Protein Kinases/metabolism , RNA Interference , RNA, Small Interfering/genetics , Retinoblastoma Protein/metabolism , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/genetics , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Gemcitabine
...