Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 209
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38069337

In vitro therapeutic efficacy studies are commonly conducted in cell monolayers. However, three-dimensional (3D) tumor spheroids are known to better represent in vivo tumors. This study used [177Lu]Lu-PSMA-I&T, an already clinically applied radiopharmaceutical for targeted radionuclide therapy against metastatic castrate-resistant prostate cancer, to demonstrate the differences in the radiobiological response between 2D and 3D cell culture models of the prostate cancer cell lines PC-3 (PSMA negative) and LNCaP (PSMA positive). After assessing the target expression in both models via Western Blot, cell viability, reproductive ability, and growth inhibition were assessed. To investigate the geometric effects on dosimetry for the 2D vs. 3D models, Monte Carlo simulations were performed. Our results showed that PSMA expression in LNCaP spheroids was highly preserved, and target specificity was shown in both models. In monolayers of LNCaP, no short-term (48 h after treatment), but only long-term (14 days after treatment) radiobiological effects were evident, showing decreased viability and reproductive ability with the increasing activity. Further, LNCaP spheroid growth was inhibited with the increasing activity. Overall, treatment efficacy was higher in LNCaP spheroids compared to monolayers, which can be explained by the difference in the resulting dose, among others.


Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/therapeutic use , Radiometry , Radioisotopes , Prostatic Neoplasms, Castration-Resistant/drug therapy , Lutetium/therapeutic use , Prostate-Specific Antigen , Heterocyclic Compounds, 1-Ring , Dipeptides
2.
Molecules ; 28(23)2023 Nov 21.
Article En | MEDLINE | ID: mdl-38067427

[177Lu]Lu-PSMAI&T is widely used for the radioligand therapy of metastatic castration-resistant prostate cancer (mCRPC). Since this kind of therapy has gained a large momentum in recent years, an upscaled production process yielding multiple patient doses in one batch has been developed. During upscaling, the established production method as well as the HPLC quality control were challenged. A major finding was a correlation between the specific activity and the formation of a pre-peak, presumably caused by radiolysis. Hence, nonradioactive reference standards were irradiated with an X-ray source and the formed pre-peak was subsequently identified as a deiodination product by UPLC-MS. To confirm the occurrence of the same deiodinated side product in the routine batch, a customized deiodinated precursor was radiolabeled and analyzed with the same HPLC setup, revealing an identical retention time to the pre-peak in the formerly synthesized routine batches. Additionally, further cyclization products of [177Lu]Lu-PSMAI&T were identified as major contributors to radiochemical impurities. The comparison of two HPLC methods showed the likelihood of the overestimation of the radiochemical purity during the synthesis of [177Lu]Lu-PSMAI&T. Finally, a prospective cost reduction through an optimization of the production process was shown.


Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prospective Studies , Chromatography, Liquid , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostate-Specific Antigen , Tandem Mass Spectrometry , Radiopharmaceuticals/therapeutic use , Heterocyclic Compounds, 1-Ring , Dipeptides , Treatment Outcome
3.
Pharmaceutics ; 15(11)2023 Nov 15.
Article En | MEDLINE | ID: mdl-38004604

The first-in-class ruthenium-based chemotherapeutic agent BOLD-100 (formerly IT-139, NKP-1339, KP1339) is currently the subject of clinical evaluation for the treatment of gastric, pancreatic, colorectal and bile duct cancer. A radiolabeled version of the compound could present a helpful diagnostic tool. Thus, this study investigated the pharmacokinetics of BOLD-100 in more detail to facilitate the stratification of patients for the therapy. The synthesis of [103Ru]BOLD-100, radiolabeled with carrier added (c.a.) ruthenium-103, was established and the product was characterized by HPLC and UV/Vis spectroscopy. In order to compare the radiolabeled and non-radioactive versions of BOLD-100, both complexes were fully evaluated in vitro and in vivo. The cytotoxicity of the compounds was determined in two colon carcinoma cell lines (HCT116 and CT26) and biodistribution studies were performed in Balb/c mice bearing CT26 allografts over a time period of 72 h post injection (p.i.). We report herein preclinical cytotoxicity and pharmacokinetic data for BOLD-100, which were found to be identical to those of its radiolabeled analog [103Ru]BOLD-100.

4.
iScience ; 26(11): 108137, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37867937

Studies indicate that the radiotracer 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) can be metabolized beyond 2-[18F]FDG-6-phosphate (2-[18F]FDG-6-P), but its metabolism is incompletely understood. Most importantly, it remains unclear whether downstream metabolism affects tracer accumulation in vivo. Here we present a fingerprint of 2-[18F]FDG radiometabolites over time in cancer cells, corresponding tumor xenografts and murine organs. Strikingly, radiometabolites representing glycogen metabolism or the oxPPP correlated inversely with tracer accumulation across all examined tissues. Recent studies suggest that not only hexokinase, but also hexose-6-phosphate dehydrogenase (H6PD), an enzyme of the oxidative pentose phosphate pathway (oxPPP), determines 2-[18F]FDG accumulation. However, little is known about the corresponding enzyme glucose-6-phosphate dehydrogenase (G6PD). Our mechanistic in vitro experiments on the role of the oxPPP propose that 2-[18F]FDG can be metabolized via both G6PD and H6PD, but data from separate enzyme knockdown suggest diverging roles in downstream tracer metabolism. Overall, we propose that tissue-specific metabolism beyond 2-[18F]FDG-6-P could matter for imaging.

5.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article En | MEDLINE | ID: mdl-37761975

To investigate the use of kinetic parameters derived from direct Patlak reconstructions of [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) to predict the histological grade of malignancy of the primary tumor of patients with prostate cancer (PCa). Thirteen patients (mean age 66 ± 10 years) with a primary, therapy-naïve PCa (median PSA 9.3 [range: 6.3-130 µg/L]) prior radical prostatectomy, were recruited in this exploratory prospective study. A dynamic whole-body [68Ga]Ga-PSMA-11 PET/CT scan was performed for all patients. Measured quantification parameters included Patlak slope (Ki: absolute rate of tracer consumption) and Patlak intercept (Vb: degree of tracer perfusion in the tumor). Additionally, the mean and maximum standardized uptake values (SUVmean and SUVmax) of the tumor were determined from a static PET 60 min post tracer injection. In every patient, initial PSA (iPSA) values that were also the PSA level at the time of the examination and final histology results with Gleason score (GS) grading were correlated with the quantitative readouts. Collectively, 20 individual malignant prostate lesions were ascertained and histologically graded for GS with ISUP classification. Six lesions were classified as ISUP 5, two as ISUP 4, eight as ISUP 3, and four as ISUP 2. In both static and dynamic PET/CT imaging, the prostate lesions could be visually distinguished from the background. The average values of the SUVmean, slope, and intercept of the background were 2.4 (±0.4), 0.015 1/min (±0.006), and 52% (±12), respectively. These were significantly lower than the corresponding parameters extracted from the prostate lesions (all p < 0.01). No significant differences were found between these values and the various GS and ISUP (all p > 0.05). Spearman correlation coefficient analysis demonstrated a strong correlation between static and dynamic PET/CT parameters (all r ≥ 0.70, p < 0.01). Both GS and ISUP grading revealed only weak correlations with the mean and maximum SUV and tumor-to-background ratio derived from static images and dynamic Patlak slope. The iPSA demonstrated no significant correlation with GS and ISUP grading or with dynamic and static PET parameter values. In this cohort of mainly high-risk PCa, no significant correlation between [68Ga]Ga-PSMA-11 perfusion and consumption and the aggressiveness of the primary tumor was observed. This suggests that the association between SUV values and GS may be more distinctive when distinguishing clinically relevant from clinically non-relevant PCa.

6.
Chemistry ; 29(62): e202302277, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37552007

Fluorinated carbohydrates are important tools for understanding the deregulation of metabolic fluxes and pathways. Fluorinating specific positions within the sugar scaffold can lead to enhanced metabolic stability and subsequent metabolic trapping in cells. This principle has, however, never been applied to study the metabolism of the rare sugars of the pentose phosphate pathway (PPP). In this study, two fluorinated derivatives of d-sedoheptulose were designed and synthesized: 4-deoxy-4-fluoro-d-sedoheptulose (4DFS) and 3-deoxy-3-fluoro-d-sedoheptulose (3DFS). Both sugars are taken up by human fibroblasts but only 4DFS is phosphorylated. Fluorination of d-sedoheptulose at C-4 effectively halts the enzymatic degradation by transaldolase and transketolase. 4DFS thus has a high potential as a new PPP imaging probe based on the principle of metabolic trapping. Therefore, the synthesis of potential radiolabeling precursors for 4DFS for future radiofluorinations with fluorine-18 is presented.


Heptoses , Sugars , Humans , Pentose Phosphate Pathway , Halogenation
7.
Cell Mol Gastroenterol Hepatol ; 15(6): 1391-1419, 2023.
Article En | MEDLINE | ID: mdl-36868311

BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.


Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Fibroblasts/metabolism , Coculture Techniques , Organoids/metabolism , Cancer-Associated Fibroblasts/metabolism , Colorectal Neoplasms/pathology , Tumor Microenvironment
8.
Front Oncol ; 13: 986788, 2023.
Article En | MEDLINE | ID: mdl-36816966

Introduction: Amino-acid positron emission tomography (PET) is a validated metabolic imaging approach for the diagnostic work-up of gliomas. This study aimed to evaluate sex-specific radiomic characteristics of L-[S-methyl-11Cmethionine (MET)-PET images of glioma patients in consideration of the prognostically relevant biomarker isocitrate dehydrogenase (IDH) mutation status. Methods: MET-PET of 35 astrocytic gliomas (13 females, mean age 41 ± 13 yrs. and 22 males, mean age 46 ± 17 yrs.) and known IDH mutation status were included. All patients underwent radiomic analysis following imaging biomarker standardization initiative (IBSI)-conform guidelines both from standardized uptake value (SUV) and tumor-to-background ratio (TBR) PET values. Aligned Monte Carlo (MC) 100-fold split was utilized for SUV and TBR dataset pairs for both sex and IDH-specific analysis. Borderline and outlier scores were calculated for both sex and IDH-specific MC folds. Feature ranking was performed by R-squared ranking and Mann-Whitney U-test together with Bonferroni correction. Correlation of SUV and TBR radiomics in relation to IDH mutational status in male and female patients were also investigated. Results: There were no significant features in either SUV or TBR radiomics to distinguish female and male patients. In contrast, intensity histogram coefficient of variation (ih.cov) and intensity skewness (stat.skew) were identified as significant to predict IDH +/-. In addition, IDH+ females had significant ih.cov deviation (0.031) and mean stat.skew (-0.327) differences compared to IDH+ male patients (0.068 and -0.123, respectively) with two-times higher standard deviations of the normal brain background MET uptake as well. Discussion: We demonstrated that female and male glioma patients have significantly different radiomic profiles in MET PET imaging data. Future IDH prediction models shall not be built on mixed female-male cohorts, but shall rely on sex-specific cohorts and radiomic imaging biomarkers.

9.
Cells ; 12(3)2023 01 18.
Article En | MEDLINE | ID: mdl-36766704

Radiation therapy is one of the most effective tools in cancer therapy. However, success varies individually, necessitating improved understanding of radiobiology. Three-dimensional (3D) tumor spheroids are increasingly gaining attention, being a superior in vitro cancer model compared to 2D cell cultures. This in vitro study aimed at comparing radiation responses in 2D and 3D cell culture models of different human cancer cell lines (PC-3, LNCaP and T-47D) irradiated with varying doses (1, 2, 4, 6, 8 or 20 Gy) of X-ray beams. Radiation response was analyzed by growth analysis, various cell viability assays (e.g., clonogenic assay, resazurin assay) and amount of DNA damage (γH2AX Western Blot). Results showed decreasing cell proliferation with the increase of radiation doses for all cell lines in monolayers and spheroids of LNCaP and T-47D. However, significantly lower radiosensitivity was detected in spheroids, most pronounced in PC-3, evincing radiation resistance of PC-3 spheroids up to 8 Gy and significant growth inhibition only by a dose escalation of 20 Gy. Cell line comparison showed highest radiosensitivity in LNCaP, followed by T-47D and PC-3 in 2D, whereas, in 3D, T-47D showed highest sensitivity. The results substantiate the significant differences in radiobiological response to X-rays between 2D and 3D cell culture models.


Neoplasms , Humans , Neoplasms/pathology , Cell Line , Radiation Tolerance , Radiobiology , Cell Culture Techniques, Three Dimensional
10.
Transl Psychiatry ; 13(1): 33, 2023 02 01.
Article En | MEDLINE | ID: mdl-36725835

Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.


Dorsolateral Prefrontal Cortex , Serotonin , Humans , Depression , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Receptor, Serotonin, 5-HT1A , Transcranial Magnetic Stimulation/methods , Proof of Concept Study
11.
J Nucl Med ; 64(6): 863-868, 2023 06.
Article En | MEDLINE | ID: mdl-36657982

The present study was carried out to investigate whether PET imaging can be used as a potential substitute for immunohistochemical analysis of tumor samples in prostate cancer (PC) patients. Correlation between imaging signals of 2 PET tracers and the corresponding target structures was assessed. The first tracer was [68Ga]Ga-PSMA (prostate-specific membrane antigen)-HBED-CC (N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid) [68Ga]Ga-PSMAHBED-CC ([68Ga]PSMA), which is already implemented in clinical routines. The second tracer was 16ß-[18F]fluoro-5α-dihydrotestosterone (16ß-[18F]FDHT), which binds to the androgen receptor (AR). The AR is particularly interesting in PC, because AR expression status and its shift during therapy might directly influence patient care. Methods: This prospective, explorative clinical study included 10 newly diagnosed PC patients. Each patient underwent [68Ga]PSMA PET/MRI and [18F]FDHT PET/MRI scans before prostatectomy. Cancer SUVs were determined and related to background SUVs. After prostatectomy, tumor tissue was sampled, and AR and prostate-specific membrane antigen (PSMA) expression was determined. AR and PSMA expression was evaluated quantitatively with the open-source bioimage analysis software QuPath and with a 4-tier rating system. Correlation between imaging signals and marker expression was statistically assessed. Results: For [18F]FDHT, the SUVmax/SUVbackground ratio showed a significant, strong correlation (r = 0.72; P = 0.019) with the AR optical density of the correlating tissue sample. The correlation between PSMA optical density and the [68Ga]PSMA SUVmax/SUVbackground ratio was not significant (P = 0.061), yet a positive correlation trend could be observed (r = 0.61). SUVmax/SUVbackground ratios were higher for [68Ga]PSMA (mean ± SD, 34.9 ± 24.8) than for [18F]FDHT (4.8 ± 1.2). In line with these findings, the tumor detection rates were 90% for the [68Ga]PSMA PET scan but only 40% for the [18F]FDHT PET scan. The 4-tier rating of PSMA staining intensity yielded very homogeneous results, with values of 3+ for most subjects (90%). AR staining was rated as 1+ in 2 patients (20%), 2+ in 4 patients (40%), and 3+ in 4 patients (40%). Conclusion: [18F]FDHT PET may be useful for monitoring AR expression and alterations in AR expression during treatment of PC patients. This approach may facilitate early detection of treatment resistance and allows for adaptation of therapy to prevent cancer progression. [18F]FDHT PET is inferior to [68Ga]PSMA PET for primary PC diagnosis, but the correlation between [68Ga]PSMA SUVs and PSMA expression is weaker than that between [18F]FDHT and the AR.


Gallium Radioisotopes , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Prostate/pathology , Prospective Studies , Positron-Emission Tomography/methods , Prostatic Neoplasms/pathology , Edetic Acid/metabolism , Prostate-Specific Antigen
12.
European J Org Chem ; 26(31): e202300339, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-38505325

Fluorinated carbohydrates are valuable tools for enzymological studies due to their increased metabolic stability compared to their non-fluorinated analogues. Replacing different hydroxyl groups within the same monosaccharide by fluorine allows to influence a wide range of sugar-receptor interactions and enzymatic transformations. In the past, this principle was frequently used to study the metabolism of highly abundant carbohydrates, while the metabolic fate of rare sugars is still poorly studied. Rare sugars, however, are key intermediates of many metabolic routes, such as the pentose phosphate pathway (PPP). Here we present the design and purely chemical synthesis of a set of three deoxyfluorinated analogues of the rare sugars d-xylulose and d-ribulose: 1-deoxy-1-fluoro-d-ribulose (1DFRu), 3-deoxy-3-fluoro-d-ribulose (3DFRu) and 3-deoxy-3-fluoro-d-xylulose (3DFXu). Together with a designed set of potential late-stage radio-fluorination precursors, they have the potential to become useful tools for studies on the complex equilibria of the non-oxidative PPP.

13.
Cancers (Basel) ; 14(22)2022 Nov 11.
Article En | MEDLINE | ID: mdl-36428644

Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Increased expression of CXCR4 has been associated with liver metastasis, disease progression, and shortened survival. Using in vitro cell binding studies and the in ovo model, we aimed to investigate the potential of [68Ga]Ga-Pentixafor, a radiotracer specifically targeting human CXCR4, for CRC imaging. Specific membrane binding and internalisation of [68Ga]Ga-Pentixafor was shown for HT29 cells, but not for HCT116 cells. Accordingly, [68Ga]Ga-Pentixafor accumulated specifically in CAM-xenografts derived from HT29 cells, but not in HCT116 xenografts, as determined by µPET/MRI. The CAM-grown xenografts were histologically characterised, demonstrating vascularisation of the graft, preserved expression of human CXCR4, and viability of the tumour cells within the grafts. In vivo viability was further confirmed by µPET/MRI measurements using 2-[18F]FDG as a surrogate for glucose metabolism. [68Ga]Ga-Pentixafor µPET/MRI scans showed distinct radiotracer accumulation in the chick embryonal heart, liver, and kidneys, whereas 2-[18F]FDG uptake was predominantly found in the kidneys and joints of the chick embryos. Our findings suggest that [68Ga]Ga-Pentixafor is an interesting novel radiotracer for CRC imaging that is worth further investigation. Moreover, this study further supports the suitability of the CAM-xenograft model for the initial preclinical evaluation of targeted radiopharmaceuticals.

14.
Nucl Med Commun ; 43(11): 1113-1120, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36120814

OBJECTIVE: [ 177 Lu]Lu-PSMA radioligand therapy (PSMA-RLT) is a promising therapy for patients with metastatic castration-resistant prostate cancer (mCRPC) and offers a survival benefit particularly to patients with only lymph node metastases. We therefore sought to evaluate the clinical outcome of this therapy in such a cohort. METHODS: Of all prostate cancer patients admitted to our department between September 2015 and March 2019 to receive 1-4 courses of PSMA-RLT (each course consisted of three cycles of highly standardized PSMA-RLT every 4 weeks), only 10 consecutive men were found to have nodal metastases only and were analyzed retrospectively. RESULTS: Nine out of 10 patients responded to their first PSMA-RLT course with a mean prostate-specific antigen (PSA) decline of 71.8 ± 25.2%, seven of them demonstrated a PSA decline of ≥50%. Collectively, seven of eight patients responded to further PSMA-RLT courses with a total PSA reduction of 59.8 ± 30.0%, five of which showed a PSA reduction of ≥50%. One patient experienced complete remission. Median progression-free survival was 85 weeks (range 14-255 weeks) and median overall survival was not reached during the median observation time of 209 weeks (30-298 weeks). Univariate Cox-regression identified initial PSA decline as the only predictive parameter for progression-free survival ( P = 0.047). CONCLUSION: mCRPC patients with only lymph node metastases showed favorable survival and excellent response to PSMA-RLT, leading to transient partial remission of the disease in most of them.


Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant , Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Humans , Lutetium/therapeutic use , Lymphatic Metastasis , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Radioisotopes , Retrospective Studies
15.
Basic Res Cardiol ; 117(1): 42, 2022 08 25.
Article En | MEDLINE | ID: mdl-36008727

Sympathetic nerve denervation after myocardial infarction (MI) predicts risk of sudden cardiac death. Therefore, therapeutic approaches limit infarct size, improving adverse remodeling and restores sympathetic innervation have a great clinical potential. Remote ischemic perconditioning (RIPerc) could markedly attenuate MI-reperfusion (MIR) injury. In this study, we aimed to assess its effects on cardiac sympathetic innervation and metabolism. Transient myocardial ischemia is induced by ligature of the left anterior descending coronary artery (LAD) in male Sprague-Dawley rats, and in vivo cardiac 2-[18F]FDG and [11C]mHED PET scans were performed at 14-15 days after ischemia. RIPerc was induced by three cycles of 5-min-long unilateral hind limb ischemia and intermittent 5 min of reperfusion during LAD occlusion period. The PET quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density (tyrosine hydroxylase positive staining) and chondroitin sulfate proteoglycans (CSPG, inhibiting neuron regeneration) expression were assessed by immunohistochemistry. There was no significant difference in the mean hypometabolism 2-[18F]FDG uptake ratio (44.6 ± 4.8% vs. 45.4 ± 4.4%) between MIR rats and MIR + RIPerc rats (P > 0.05). However, the mean [11C]mHED nervous activity of denervated myocardium was significantly elevated in MIR + RIPerc rats compared to the MIR rats (35.9 ± 7.1% vs. 28.9 ± 2.3%, P < 0.05), coupled with reduced denervated myocardium area (19.5 ± 5.3% vs. 27.8 ± 6.6%, P < 0.05), which were associated with preserved left-ventricular systolic function, a less reduction in neuron density, and a significant reduction in CSPG and CD68 expression in the myocardium. RIPerc presented a positive effect on cardiac sympathetic-nerve innervation following ischemia, but showed no significant effect on myocardial metabolism.


Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Fluorodeoxyglucose F18 , Male , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
16.
EJNMMI Res ; 12(1): 53, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-36018389

BACKGROUND: The NMDA receptor (NMDAR) plays a key role in the central nervous system, e.g., for synaptic transmission. While synaptic NMDARs are thought to have protective characteristics, activation of extrasynaptic NMDARs might trigger excitotoxic processes linked to neuropsychiatric disorders. Since extrasynaptic NMDARs are typically GluN2B-enriched, the subunit is an interesting target for drug development and treatment monitoring. Recently, the novel GluN2B-specific PET radioligand (R)-[11C]Me-NB1 was investigated in rodents and for the first time successfully translated to humans. To assess whether (R)-[11C]Me-NB1 is a valuable radioligand for (repeated) clinical applications, we evaluated its safety, biodistribution and dosimetry. METHODS: Four healthy subjects (two females, two males) underwent one whole-body PET/MR measurement lasting for more than 120 min. The GluN2B-specific radioligand (R)-[11C]Me-NB1 was administered simultaneously with the PET start. Subjects were measured in nine passes and six bed positions from head to mid-thigh. Regions of interest was anatomically defined for the brain, thyroid, lungs, heart wall, spleen, stomach contents, pancreas, liver, kidneys, bone marrow and urinary bladder contents, using both PET and MR images. Time-integrated activity coefficients were estimated to calculate organ equivalent dose coefficients and the effective dose coefficient. Additionally, standardized uptake values (SUV) were computed to visualize the biodistribution. RESULTS: Administration of the radioligand was safe without adverse events. The organs with the highest uptake were the urinary bladder, spleen and pancreas. Organ equivalent dose coefficients were higher in female in almost all organs, except for the urinary bladder of male. The effective dose coefficient was 6.0 µSv/MBq. CONCLUSION: The GluN2B-specific radioligand (R)-[11C]Me-NB1 was well-tolerated without reported side effects. Effective dose was estimated to 1.8 mSv when using 300 MBq of presented radioligand. The critical organ was the urinary bladder. Due to the low effective dose coefficient of this radioligand, longitudinal studies for drug development and treatment monitoring of neuropsychiatric disorders including neurodegenerative diseases are possible. Trial registration Registered on 11th of June 2019 at https://www.basg.gv.at (EudraCT: 2018-002933-39).

17.
Appl Radiat Isot ; 189: 110425, 2022 Nov.
Article En | MEDLINE | ID: mdl-36030760

Tissue available for retrospective research questions is often already paraffin-embedded for better preservation. However, in vitro autoradiography (AURA) is normally performed on cryopreserved tissue sections. We hypothesized a) that it would also be feasible with deparaffinized tissue sections, enabling the use of human paraffin-embedded tissue for in vitro AURA and b) that the results would be comparable to those obtained with corresponding cryosections. For that purpose, the clinically relevant oncological targets CXCR4, SSTR and PSMA were evaluated. In vitro AURA on deparaffinized tissue sections was feasible, but only with the two receptor ligands [68Ga]Ga-PentixaFor and [68Ga]Ga-DOTANOC. [68Ga]Ga-PSMA-11 did not show any binding on deparaffinized tissue sections, suggesting that native tissue is required for an interaction between this inhibitor and the enzyme.


Gallium Radioisotopes , Positron-Emission Tomography , Autoradiography , Feasibility Studies , Humans , Positron-Emission Tomography/methods , Retrospective Studies
19.
Eur Urol Open Sci ; 40: 117-124, 2022 Jun.
Article En | MEDLINE | ID: mdl-35638090

Background: Prostate-specific membrane antigen (PSMA) targeted molecular imaging using positron emission tomography (PET) has significantly improved the diagnosis and treatment of prostate cancer (PCA). Objective: To assess the feasibility and compare the diagnostic accuracy of [68Ga]Ga-PSMA-11 PET images taken at baseline, before the initiation of systemic treatment and preoperative images, using histopathology after cytoreductive surgery as reference. Design setting and participants: We identified 20 patients in our prospectively maintained database with primary oligometastatic PCA who underwent cytoreductive radical prostatectomy and superextended pelvic lymph node dissection after systemic therapy, who had baseline and preoperative [68Ga]Ga-PSMA-11 PET imaging available. Outcome measurements and statistical analysis: We performed a region-based analysis to determine the diagnostic accuracy of imaging, using pathology as a reference. Regions were predefined as prostate, internal iliac left/right, obturator left/right, external iliac left/right, common iliac left/right, and presacral. Results and limitations: Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and diagnostic effectiveness were, respectively, 95.65%, 78.22%, 98.39%, 57.89%, and 83.00% for baseline [68Ga]Ga-PSMA-11 PET, compared to 56.52%, 98.05%, 88.30%, 89.66%, and 88.50% for preoperative [68Ga]Ga-PSMA-11 PET. On a receiver operating characteristic analysis, the diagnostic accuracy of baseline [68Ga]Ga-PSMA-11 PET with an area under the curve (AUC) of 0.87 (95% confidence interval [CI] 0.83-0.92) was significantly better than that of preoperative [68Ga]Ga-PSMA-11 PET after systemic therapy with an AUC of 0.77 (95% CI 0.70-0.85, p = 0.01). Conclusions: Baseline imaging, [68Ga]Ga-PSMA-11 PET has significantly better diagnostic accuracy, sensitivity, and NPV than images obtained preoperatively, in systemically pretreated patients. If a patient is suitable for local treatment and complete resection of the residual tumor is intended, [68Ga]Ga-PSMA-11 PET images taken prior to systemic therapy are significantly more accurate in selecting the relevant lymph nodes for resection. Patient summary: We found that prostate-specific membrane antigen positron emission tomography (PSMA-PET) imaging used early, before hormonal therapy or chemotherapy, provides more accurate information about the spread of the disease, than if used immediately before surgery but after hormonal therapy or chemotherapy. Early use of PSMA-PET has the potential to improve therapy also at later stages of the disease.

20.
Sci Rep ; 12(1): 3283, 2022 02 28.
Article En | MEDLINE | ID: mdl-35228586

Simultaneous characterization of pathologies by multi-tracer positron emission tomography (PET) is among the most promising applications in nuclear medicine. Aim of this work was the simultaneous production of two PET-tracers in one module and test the relevance for human application. [11C]harmine and [11C]DASB were concurrently synthesized in a 'two-in-one-pot' reaction in quality for application. Dual-tracer protocol was simulated using 16 single PET scans in different orders of tracer application separated by different time intervals. Volume of distribution was calculated for single- and dual-tracer measurements using Logan's plot and arterial input function in 13 brain regions. The 'two-in-one-pot' reaction yielded equivalent amounts of both radiotracers with comparable molar activities. The simulations of the dual-tracer application were comparable to the single bolus injections in 13 brain regions, when [11C]harmine was applied first and [11C]DASB second, with an injection time interval of 45 min (rxy = 0.90). Our study shows the successful simultaneous dual-tracer production leading to decreased radiation burden and costs. The simulation of dual subject injection to quantify the monoamine oxidase-A and serotonin transporter distribution proved its high potential. Multi-tracer imaging may drive more sophisticated study designs and diminish the day-to-day differences in the same individual as well as increase PET scanner efficiency.


Harmine , Tomography, X-Ray Computed , Brain/diagnostic imaging , Humans , Neuroimaging , Positron-Emission Tomography/methods
...