Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 90
1.
Surg Today ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38733536

The world's first clinical cardiac xenotransplantation, using a genetically engineered pig heart with 10 gene modifications, prolonged the life of a 57-year-old man with no other life-saving options, by 60 days. It is foreseeable that xenotransplantation will be introduced in clinical practice in the United States. However, little clinical or regulatory progress has been made in the field of xenotransplantation in Japan in recent years. Japan seems to be heading toward a "device lag", and the over-importation of medical devices and technology in the medical field is becoming problematic. In this review, we discuss the concept of pig-heart xenotransplantation, including the pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental heart overgrowth, as well as genetic modification strategies in pigs to prevent or minimize these problems. Moreover, we summarize the necessity for and current status of xenotransplantation worldwide, and future prospects in Japan, with the aim of initiating xenotransplantation in Japan using genetically modified pigs without a global delay. It is imperative that this study prompts the initiation of preclinical xenotransplantation research using non-human primates and leads to clinical studies.

2.
Transpl Immunol ; 84: 102020, 2024 Jun.
Article En | MEDLINE | ID: mdl-38452982

OBJECTIVE: Innate immunity plays a vital role in xenotransplantation. A CD47 molecule, binding to the SIRPα expressed on monocyte/macrophage cells, can suppress cytotoxicity. Particularly, the SIRPα contains ITIM, which delivers a negative signal. Our previous study demonstrated that the binding between CL-P1 and surfactant protein-D hybrid (CL-SP-D) with SIRPα regulates macrophages' phagocytic activity. In this study, we examined the effects of human CD47 and CL-SP-D expression on the inhibition of xenograft rejection by neutrophils in swine endothelial cells (SECs). METHODS: We first examined SIRPα expression on HL-60 cells, a neutrophil-like cell line, and neutrophils isolated from peripheral blood. CD47-expressing SECs or CL-SP-D-expressing SECs were generated through plasmid transfection. Subsequently, these SECs were co-cultured with HL-60 cells or neutrophils. After co-culture, the degree of cytotoxicity was calculated using the WST-8 assay. The suppressive function of CL-SP-D on neutrophils was subsequently examined, and the results were compared with those of CD47 using naïve SECs as controls. Additionally, we assessed ROS production and neutrophil NETosis. RESULTS: In initial experiments, the expression of SIRPα on HL-60 and neutrophils was confirmed. Exposure to CL-SP-D significantly suppressed the cytotoxicity in HL-60 (p = 0.0038) and neutrophils (p = 0.00003). Furthermore, engagement with CD47 showed a suppressive effect on neutrophils obtained from peripheral blood (p = 0.0236) but not on HL-60 (p = 0.4244). The results of the ROS assays also indicated a significant downregulation of SEC by CD47 (p = 0.0077) or CL-SP-D (p = 0.0018). Additionally, the suppression of NETosis was confirmed (p = 0.0125) in neutrophils co-cultured with S/CL-SP-D. CONCLUSION: These results indicate that CL-SP-D is highly effective on neutrophils in xenogeneic rejection. Furthermore, CL-SP-D was more effective than CD47 at inhibiting neutrophil-mediated xenograft rejection.


Antigens, Differentiation , CD47 Antigen , Graft Rejection , Neutrophils , Receptors, Immunologic , Humans , CD47 Antigen/metabolism , CD47 Antigen/immunology , Neutrophils/immunology , Neutrophils/metabolism , Animals , Graft Rejection/immunology , Swine , HL-60 Cells , Receptors, Immunologic/metabolism , Antigens, Differentiation/metabolism , Antigens, Differentiation/immunology , Coculture Techniques , Transplantation, Heterologous , Endothelial Cells/immunology , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism
3.
Exp Ther Med ; 24(3): 590, 2022 Sep.
Article En | MEDLINE | ID: mdl-35949334

Macrophage-mediated xenogeneic rejection is a major immunological obstacle. We recently reported that membrane-type surfactant protein-D (SP-D) on swine endothelial cells (SECs) suppressed macrophage-mediated rejection. Similar to SP-D, the carbohydrate recognition domain of surfactant protein-A (SP-A) can induce inhibitory signals in effector cells. The present study aimed to examine the suppressive effect of SP-A on macrophage-mediated xenogeneic rejection. Naive SECs and SPA-transfected SECs (SEC/SP-A) were co-cultured with THP-1 cells and cytotoxicity was evaluated. To investigate the effect of SP-A on phagocytosis, human macrophages were co-cultured with SEC or SEC/SP-A, and the extent of phagocytosis and production of reactive oxygen species were assessed via flow cytometry. The mRNA expression levels of inflammatory cytokines in macrophages were determined using reverse transcription-PCR. Additionally, the effects of THP-1-Lucia NF-κB cells on transcription factors were evaluated. The cytotoxicity and phagocytosis of SEC/SP-A were significantly decreased compared with those of naive SEC. Furthermore, the co-culture of human macrophages with SEC/SP-A decreased reactive oxygen species production, and the mRNA expression levels of TNFα were decreased in macrophages, whereas those of IL-10 were increased. In addition, NF-κB transcription was decreased in SEC/SP-A compared with that in SEC. In conclusion, the ectopic expression of human SP-A in porcine cells represents an attractive method for suppressing macrophage-mediated cytotoxicity.

4.
Transpl Immunol ; 74: 101663, 2022 10.
Article En | MEDLINE | ID: mdl-35835297

Cellular xenogeneic rejection by the innate immune system is a major immunological obstruction that needs to be overcome for the successful clinical use of xenografts. Our focus has been on macrophage-mediated xenogeneic rejection, since suppressing macrophage function has considerable potential for practical applications in the area of xenotransplantation. We report herein on an investigation of the suppressive effect of human CD177 (hCD177) against macrophage-mediated xenogeneic rejection. Wild type swine aortic endothelial cell (SEC) and an SEC transfectant with hCD177 (SEC/hCD177) were co-cultured with macrophages, and the degree of cytotoxicity was evaluated by WST-8 assays, and phagocytosis was examined using Calcein-AM labeling methods. The expression of anti/pro-inflammatory cytokines was evaluated by RT-qPCR and the phosphorylation of SHP-1 on macrophages in co-culture was evaluated by Western blotting. The result of cytotoxicity assays indicated that hCD177 suppressed M1 macrophage-mediated xenogeneic rejection (vs. SEC, p < 0.0001). Similarly, the result of phagocytosis assays indicated that hCD177 suppressed it (vs. SEC, p < 0.05). In addition, hCD177 significantly suppressed the expression of IL-1ß, a pro-inflammatory cytokine, in M1 macrophages (vs. SEC, p < 0.01). Luciferase assays using THP1-Lucia NF-kB also showed a significant difference in NF-kB activation (vs. SEC, p < 0.001). In addition, hCD177 was found to induce the phosphorylation of SHP-1 in M1 macrophages (vs. SEC, p < 0.05). These findings indicate that hCD177 suppresses M1 macrophage-mediated xenogeneic rejection, at least in part via in the phosphorylation of SHP-1.


Ectopic Gene Expression , NF-kappa B , Animals , Cytokines/metabolism , GPI-Linked Proteins/metabolism , Graft Rejection , Humans , Isoantigens/metabolism , Macrophages , NF-kappa B/metabolism , Phagocytosis , Receptors, Cell Surface/metabolism , Swine
5.
Front Immunol ; 13: 860165, 2022.
Article En | MEDLINE | ID: mdl-35493484

After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.


Complement System Proteins , Graft Rejection , Animals , Antigens, Heterophile , Complement Activation , Complement System Proteins/physiology , Humans , Swine , Transplantation, Heterologous
6.
Front Immunol ; 13: 858604, 2022.
Article En | MEDLINE | ID: mdl-35418992

Xenotransplantation is very attractive strategy for addressing the shortage of donors. While hyper acute rejection (HAR) caused by natural antibodies and complement has been well defined, this is not the case for innate cellular xenogeneic rejection. An increasing body of evidence suggests that innate cellular immune responses contribute to xenogeneic rejection. Various molecular incompatibilities between receptors and their ligands across different species typically have an impact on graft outcome. NK cells are activated by direct interaction as well as by antigen dependent cellular cytotoxicity (ADCC) mechanisms. Macrophages are activated through various mechanisms in xenogeneic conditions. Macrophages recognize CD47 as a "marker of self" through binding to SIRPα. A number of studies have shown that incompatibility of porcine CD47 against human SIRPα contributes to the rejection of xenogeneic target cells by macrophages. Neutrophils are an early responder cell that infiltrates xenogeneic grafts. It has also been reported that neutrophil extracellular traps (NETs) activate macrophages as damage-associated pattern molecules (DAMPs). In this review, we summarize recent insights into innate cellular xenogeneic rejection.


CD47 Antigen , Graft Rejection , Immunity, Cellular , Transplantation, Heterologous , Animals , CD47 Antigen/metabolism , Cytotoxicity, Immunologic , Humans , Swine
7.
Transpl Immunol ; 72: 101559, 2022 06.
Article En | MEDLINE | ID: mdl-35227893

BACKGROUND: C5a promotes alloreactivity via the C5a receptor 1 (C5aR1) on immune cells, but this has not been confirmed in the case of small intestine transplantation immunity. In the present study, we examined the effect of C5aR1 antagonist (PMX53) on macrophage function in small intestinal transplantation. METHODS: The model was created by heterotopic intestinal transplantation using donor Dark Agouti and recipient Lewis rats. PMX53 was administered starting on the day of operation until postoperative day 7. The graft survivals were compared, and HE staining of grafts, lymphocyte mixed reaction test (MLR, mixed culture of T cells from lymph nodes and spleen cells from donors), and changes in macrophage and T cell accumulation in grafts on day 6 after transplantation were evaluated. In addition, the effect of PMX53 on macrophage differentiation and activation was assessed using macrophages derived from bone marrow (BMDM). RESULTS: Graft survival was significantly prolonged in the therapeutic group compared to the untreated group. Histological evaluation showed that PMX53 inhibited the shortening of the graft villus, and the stimulation index of MLR was significantly lower in the therapeutic group compared to the untreated group. In the therapeutic group, the accumulation of macrophages in intestinal graft and monocyte in blood were reduced, compared with the untreated group. PMX53 decreased the differentiation in BMDM and the mRNA expression of IL-1ß and TNF-α in activated BMDM. CONCLUSION: Inhibition of C5a/C5aR1 signaling appears to regulate macrophage differentiation and suppress rejection in small intestine transplantation immunity.


Macrophages , Receptor, Anaphylatoxin C5a , Animals , Graft Survival , Rats , Rats, Inbred Lew , Receptor, Anaphylatoxin C5a/metabolism , Signal Transduction
8.
Photochem Photobiol ; 98(5): 1229-1235, 2022 09.
Article En | MEDLINE | ID: mdl-35238039

Extracorporeal photochemotherapy (ECP) is one of the more effective cell therapies for graft-versus-host disease (GvHD). ECP is a widely recommended therapeutic approach for the treatment of chronic GvHD, particularly steroid-refractory GVHD. In recent years, the use of a light emitting diode (LED) in the clinic has attracted considerable interest. In this study, we examined the issue of whether an ultraviolet A1-light emitting diode (UVA1-LED) can be used as a light source in ECP. To compare the efficacy of ECP with conventional UVA lamp and a UVA1-LED, we established an in vitro ECP model. Treatment efficacy was evaluated by measuring the % apoptosis and the inhibition of T-cell proliferation. To investigate the effect of ECP on the innate immune reaction, THP-1 cells with a luciferase reporter gene driven by a NF-kB response element (THP-1 luc NF-kB) were treated with ECP. The LED-ECP induced apoptosis and inhibition of T-cell proliferation as efficiently as a conventional ECP. However, LED-ECP induced less innate immunity in THP-1. Since LED devices are more compact compared with conventional UVA irradiation devices, the use of a UVA1-LED in the treatment of ECP may be a better alternative to conventional ECP therapy.


Graft vs Host Disease , Photopheresis , Graft vs Host Disease/drug therapy , Humans , NF-kappa B , Steroids/therapeutic use , Treatment Outcome
9.
Transplant Proc ; 54(2): 522-524, 2022 Mar.
Article En | MEDLINE | ID: mdl-35031120

The CRISPR/Cas3 system, classified in class I system, was recently focused as a new technology. For application of this system to porcine cells, the plasmids of bpNLS-Cascade, BPNLS-hCas3, and pBS-U6icrRNA were prepared. Initially, 2 crRNAs were established in the exon 9 of pig Gal-T (GGTA1) as #45 and #86. Next, hCas3 + #45 + #86 (group 1, control), Cascade + hCas3 + #45 (group 2), Cascade + hCas3 + #86 (group 3), and Cascade + hCas3 + #45 + #86 (group 4) were set and transfected into pig fibroblasts. Transfected cells were analyzed for bulk expression of α1,3Gal epitope by fluorescence-activated cell sorting (FACS), using a GSI-B4 lectin 2 days after the transfection. As the results, changes of expression are observed in order of G4>G2>G3, indicating the effect of the Cas3 system. Therefore, the nested polymerase chain reaction (PCR) for target region of GGTA1 was performed. Next, the PCR products from each group were checked in blotting, and the products were placed into the cloning sit of TOPO vector and transformed into Escherichia coli. Sixteen colonies of each group were checked by PCR, and clones containing PCR product with slightly varying length were evaluated. The direct sequence of these PCR changes were demonstrated as 294 to 754 bp deletions. In conclusion, we confirmed the effect of the CRISPR/Cas3 system on pig cell, especially in xenotransplantation.


CRISPR-Cas Systems , Escherichia coli , Animals , Humans , Swine , Transfection , Transplantation, Heterologous
10.
Surg Case Rep ; 8(1): 10, 2022 Jan 13.
Article En | MEDLINE | ID: mdl-35024979

BACKGROUND: Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of genetic autosomal recessive diseases that cause severe cholestasis, which progresses to cirrhosis and liver failure, in infancy or early childhood. We herein report the clinical outcomes of surgical management in patients with four types of PFIC. CASE PRESENTATION: Six patients diagnosed with PFIC who underwent surgical treatment between 1998 and 2020 at our institution were retrospectively assessed. Living-donor liver transplantation (LDLT) was performed in 5 patients with PFIC. The median age at LDLT was 4.8 (range: 1.9-11.4) years. One patient each with familial intrahepatic cholestasis 1 (FIC1) deficiency and bile salt export pump (BSEP) deficiency died after LDLT, and the four remaining patients, one each with deficiency of FIC1, BSEP, multidrug resistance protein 3 (MDR3), and tight junction protein 2 (TJP2), survived. One FIC1 deficiency recipient underwent LDLT secondary to deterioration of liver function, following infectious enteritis. Although he underwent LDLT accompanied by total external biliary diversion, the patient died because of PFIC-related complications. The other patient with FIC1 deficiency had intractable pruritus and underwent partial internal biliary diversion (PIBD) at 9.8 years of age, pruritus largely resolved after PIBD. One BSEP deficiency recipient, who had severe graft damage, experienced recurrence of cholestasis due to the development of antibodies against BSEP after LDLT, and eventually died due to graft failure. The other patient with BSEP deficiency recovered well after LDLT and there was no evidence of posttransplant recurrence of cholestasis. In contrast, recipients with MDR3 or TJP2 deficiency showed good courses and outcomes after LDLT. CONCLUSIONS: Although LDLT was considered an effective treatment for PFIC, the clinical courses and outcomes after LDLT were still inadequate in patients with FIC1 and BSEP deficiency. LDLT accompanied by total biliary diversion may not be as effective for patients with FIC1 deficiency.

11.
Pediatr Surg Int ; 38(1): 115-122, 2022 Jan.
Article En | MEDLINE | ID: mdl-34546403

BACKGROUND: MicroRNAs (miRNAs) play an important role in regulating fibrogenesis in the liver. The current study examined the ability of microRNA-214 (miR-214) level in liver and serum samples obtained from patients with BA to predict progressive liver fibrosis in patients with biliary atresia (BA). METHODS: We examined miR-214 level in relation to conventional markers of liver fibrosis, with liver and serum samples from BA patients. Fifty-two patients with BA who underwent Kasai portoenterostomy and four control patients underwent liver biopsy. In 28 patients with BA, blood samples were collected to analyze circulating serum miR-214. RESULTS: MiR-214 levels in liver tissue were significantly upregulated in patients with BA who had severe liver fibrosis (F3-4) compared to those with none to mild fibrosis (F0-2), whereas suppressors-of-fused homolog (Sufu) mRNA levels were significantly suppressed in F3-4. Serum miR-214 levels were significantly higher in patients with F3-4 compared with F0-2. Area under the curve analysis showed that the serum miR-214 cut-off level for predicting F3-4 was 0.805 (p = 0.0046). CONCLUSION: Hepatic overexpression of miR-214 is associated with progression of liver fibrosis in patients with BA, and the circulating miR-214 level may serve as a non-invasive predictor of liver fibrosis.


Biliary Atresia , MicroRNAs , Biliary Atresia/surgery , Biomarkers , Humans , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , MicroRNAs/genetics , Portoenterostomy, Hepatic
12.
Transpl Immunol ; 70: 101497, 2022 02.
Article En | MEDLINE | ID: mdl-34785307

In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.


Graft Rejection , Immunosuppressive Agents , Animals , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Rats , T-Lymphocytes , Tacrolimus/therapeutic use , Transplantation, Homologous
13.
Transplant Direct ; 7(8): e734, 2021 Aug.
Article En | MEDLINE | ID: mdl-34549086

BACKGROUND: Neutrophil-induced tissue damage contributes to the rejection in xenotransplantation. Therefore, suppressing neutrophil function could be effective in suppressing xenogeneic rejection. In a previous study, we demonstrated that the ectopic expression of human cluster of differentiation 31 (CD31) on porcine endothelial cells (PEC) significantly suppressed neutrophil-mediated cytotoxicity through the homophilic binding of CD31. Cluster of differentiation 177 (CD177) was recently reported to be a high-affinity heterophilic binding partner for CD31 on endothelial cells. Thus, we hypothesized that human CD177 on PEC might induce a stronger suppression in neutrophil-mediated cytotoxicity compared with CD31. In this study, the inhibitory function of human CD177 on PEC in neutrophil-mediated cytotoxicity was investigated. METHODS: PEC were transfected with a cloning plasmid containing cDNA inserts that encoded for hCD177 and hCD31 genes. Neutrophil-induced cytotoxicity was evaluated by flow cytometry after coculturing with PEC or PEC/CD177 in the presence of phorbol 12-myristate 13-acetate. To elucidate the mechanisms responsible for hCD177-induced suppression, the phosphorylation of src homology region 2 domain containing phosphatase 1 was measured by immunoblot analysis. RESULTS: Human CD177 on PEC induced a significant reduction in neutrophil-induced cytotoxicity. In addition, CD177 on PEC induced a significant increase in the phosphorylation of src homology region 2 domain-containing phosphatase 1 in neutrophils and suppressed NETosis. CONCLUSIONS: These findings suggest that human CD177 suppresses neutrophil-mediated cytotoxicity through the inhibition of NETosis.

14.
Transplant Proc ; 52(6): 1916-1918, 2020.
Article En | MEDLINE | ID: mdl-32482451

ß-1,4-acetyl-galactosaminyltransferase 2 (ß4GalNT2)-knockout (KO) pigs have been produced and reveal less antigenicity to both humans and nonhuman primates (NHP). In this study, we checked the antibody response of human and NHP sera to pig cells with or without this gene. The ß4GalNT2-KO porcine endothelial cell (PEC), clone #11, was first established using the plasmid pX330 expressing hCas9 and sgRNA for ß4GalNT2. The glycoantigen feature on the PEC was then studied. The Sda antigen, synthesized by ß4GalNT2, was slightly ascertained on wild-type (WT)-PEC, and it became null in clone #11. The PEC response to lectins was also assessed, such as Dolichos biflorus agglutinin, soybean agglutinin, and Wisteria floribunda agglutinin. All of these lectins reduced the binding reaction to clone #11 as compared with WT-PEC. Next, several human and cynomolgus sera were checked for their natural antibody reaction to both WT-PEC and clone #11. In addition, human monocyte-mediated PEC phagocytosis was assessed. However, the reduction in phagocytosis to clone #11 was not significant. Human sera showed less reactivity to the changes in antigenicity of PEC by knocking out the ß4GalNT2 than cynomolgus sera.


Antibody Formation/immunology , Antigens/immunology , N-Acetylgalactosaminyltransferases/immunology , Transplantation, Heterologous , Animals , Cells, Cultured , Endothelial Cells/immunology , Gene Knockout Techniques , Humans , Macaca fascicularis , Swine
15.
Transplant Proc ; 52(6): 1913-1915, 2020.
Article En | MEDLINE | ID: mdl-32402461

BACKGROUND: Innate immunity by natural killer (NK) cells, macrophages, and neutrophils cause severe rejections in xenotransplantation. Therefore, the development of strategies for suppressing macrophages has considerable potential in practical applications of xenotransplantation. Recently, we found that human CD31 on swine endothelial cells (SECs) suppresses neutrophil-mediated xenogeneic rejection through homophilic binding. Since a significant amount of CD31 is expressed not only on neutrophils but also on macrophages, we studied the function of human CD31 in macrophage-mediated cytotoxicity. METHODS: SECs and hCD31-transfected SECs (SEC/hCD31) were co-cultured with macrophages and cytotoxicity by macrophages was evaluated with water-soluble tetrazolium salt, or WST-8, assay. To confirm whether or not inhibitory signals are induced by hCD31 homophilic binding, the phosphorylation of the enzyme SHP-1 was investigated with Western blotting. RESULTS: No suppression of cytotoxicity was induced in macrophages that had been co-cultured with SEC/CD31. However, phosphorylation of SHP-1 was induced in macrophages that had been co-cultured with SEC/hCD31. CONCLUSIONS: Human CD31 on SEC may induce not only inhibitory signals but also activation signals via the binding to other receptors for hCD31.


Endothelial Cells , Heterografts/immunology , Macrophages/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Animals , Coculture Techniques , Cytotoxicity, Immunologic/immunology , Endothelial Cells/immunology , Graft Rejection/immunology , Humans , Phosphorylation , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Swine , Transfection
16.
Transplant Proc ; 52(6): 1910-1912, 2020.
Article En | MEDLINE | ID: mdl-32444126

BACKGROUND: Neutrophils play an important role in xenogeneic rejection and represent a major obstacle in clinical application of xenografts. CD200 and its receptor CD200R are both type-1 membrane glycoproteins, which are members of the immunoglobulin superfamily (IgSF) and the ligation of CD200 with CD200R induces inhibitory NPXY signaling. The expression of CD200R appears in myeloid cells such as macrophages and granulocytes. Thus, we hypothesized that human CD200 expression on porcine cells might suppress the xenogeneic neutrophil-mediated cytotoxicity against porcine cells. METHODS: To prove our hypothesis, the suppressive effect of human CD200 in neutrophil-like human cell line 60 (HL-60)-mediated xenogeneic cytotoxicity against swine endothelial cells (SECs) was examined. Cytotoxicity was assessed with water-soluble tetrazolium salt 8 (WST-8) assay. RESULTS: HL-60 cells differentiated into CD66b+ CD200R+ neutrophil-like cells in the presence of dimethyl sulfoxide (DMSO). HL-60-mediated cytotoxicity against SECs was significantly suppressed by human CD200 on SECs. CONCLUSIONS: The findings in this study indicate that human CD200 may suppress neutrophil-mediated xenogeneic rejection.


Antigens, CD/immunology , Endothelial Cells , Heterografts/immunology , Neutrophils/immunology , Animals , Antigens, CD/genetics , Cell Line , Cytotoxicity, Immunologic/immunology , Endothelial Cells/immunology , Humans , Swine , Transfection
17.
Transplantation ; 104(4): 675-681, 2020 04.
Article En | MEDLINE | ID: mdl-31634326

Although xenografts are one of the most attractive strategies for overcoming the shortage of organ donors, cellular rejection by macrophages is a substantial impediment to this procedure. It is well known that macrophages mediate robust immune responses in xenografts. Macrophages also express various inhibitory receptors that regulate their immunological function. Recent studies have shown that the overexpression of inhibitory ligands on porcine target cells results in the phosphorylation of tyrosine residues on intracellular immunoreceptor tyrosine-based inhibitory motifs on macrophages, leading to the suppression of xenogenic rejection by macrophages. It has also been reported that myeloid-derived suppressor cells, a heterogeneous population of immature myeloid cells, suppress not only NK and cytotoxic T lymphocyte cytotoxicity but also macrophage-mediated cytotoxicity. This review is focused on the recent findings regarding strategies for inhibiting xenogenic rejection by macrophages.


Graft Rejection/prevention & control , Graft Survival , Immunity, Cellular , Macrophages/immunology , Transplantation, Heterologous/adverse effects , Animals , CD47 Antigen/genetics , CD47 Antigen/immunology , CD47 Antigen/metabolism , Graft Rejection/genetics , Graft Rejection/immunology , Graft Rejection/metabolism , Heterografts/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Macrophages/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/transplantation , Phagocytosis , Pulmonary Surfactant-Associated Protein D/genetics , Pulmonary Surfactant-Associated Protein D/immunology , Pulmonary Surfactant-Associated Protein D/metabolism , Sialyltransferases/genetics , Sialyltransferases/immunology , Sialyltransferases/metabolism , Signal Transduction , Treatment Outcome , beta-D-Galactoside alpha 2-6-Sialyltransferase
18.
Transpl Immunol ; 57: 101246, 2019 12.
Article En | MEDLINE | ID: mdl-31526866

OBJECTIVE: PQA-18 (Prenylated quinolinecarboxylic acid-18) has been reported to be a novel immunosuppressant that attenuates the production of various cytokines, and the differentiation of macrophages by inhibiting PAK2. In this study, we investigated the function of this drug mainly on macrophages using a rat small intestinal transplant model. METHODS: Male Dark Agouti (DA) and Lewis rats (LEW), 7-9 weeks of age, were used as donor and recipient, respectively. Approximately 15 cm intestinal grafts were heterotopically transplanted to the recipient rats. The recipient rat was treated with PQA-18 (4 mg/kg/day) by intraperitoneal injection (ip) from postoperative day 1 for 2 weeks. The in vivo effects of this drug were evaluated based on changes in body weight, and the population of each type of blood cell. Mixed lymphocyte reaction (MLR) was also assessed, using the T cells from intestinal mesenteric lymph nodes (MLN) of the grafts on POD6. Total cells from MLN and graft Payer's patch (PP) were next collected on POD6, and the number of infiltrated macrophages was determined. RESULTS: While the survival time was 7.0 ±â€¯0.77 days for the control group (n = 9), that for the PQA-18 group was 10.7 ±â€¯1.26 days (n = 10) (p < .001). Histological examinations showed a relatively clear difference in the grafts for both groups. In addition, the MLR response was significantly lower in recipients treated with PQA-18, suggesting PQA-18 well suppressed the T cells. Moreover, while a significant increase of both MHC class II and CD11b/c positive cells, estimated as differentiated/polarized macrophages, in MLN & PP was observed in the control group, PQA-18-administration significantly suppressed the differentiation of macrophages in the MLN & PP. CONCLUSION: PQA-18 significantly prolonged the survival of the rats with intestinal grafts, and also suppressed the infiltration of lymphocytes, and macrophages to the grafts.


Carboxylic Acids/therapeutic use , Graft Rejection/prevention & control , Immunosuppressive Agents/therapeutic use , Intestine, Small/pathology , Macrophage Activation/drug effects , Macrophages/immunology , Organ Transplantation , Quinolines/therapeutic use , T-Lymphocytes/immunology , p21-Activated Kinases/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Graft Survival , Humans , Intestine, Small/transplantation , Lymphocyte Culture Test, Mixed , Male , Prenylation , Rats , Rats, Inbred Lew , Transplantation, Homologous
19.
Immunobiology ; 224(5): 605-613, 2019 09.
Article En | MEDLINE | ID: mdl-31402149

PURPOSE: The delayed rejection caused by strong cell-mediated innate and adaptive xenogeneic immune responses continues to be a major obstacle. Therefore, suppressing macrophage function could be effective in avoiding this type of rejection. In this study, the suppression of T-cell immunoglobulin and ITIM domain (TIGIT) function against macrophage-mediated xenogeneic rejection was investigated. MATERIAL AND METHODS: Naïve porcine aortic endothelial cell (PAEC) and PAEC transfectant with TIGIT (PAEC/TIGIT) were co-cultured with M1 macrophages, and the degree of cytotoxicity was determined by a counting beads assay. The anti/pro-inflammatory gene expression was determined by RT-PCR and the phosphorylated SHP-1 in the macrophages after co-culturing with PAEC or PAEC/TIGIT was evaluated by western blotting. RESULTS: CD155 was expressed at essentially equal levels on both M1 and M2 macrophages, whereas TIGIT was highly expressed on M2 macrophages but not in M1 macrophages. TIGIT on PAEC significantly reduced the cytotoxicity of M1 macrophages but no significant suppression of phagocytosis was detected. TIGIT also caused a decrease in the expression of pro-inflammatory cytokines, namely TNFα, IL-1ß and IL-12 in M1 macrophages. Furthermore, PAEC/TIGIT caused a significant increase in phosphorylated SHP-1 in M1 macrophages compared to PAEC. CONCLUSION: The findings of this study indicate that TIGIT suppresses xenogeneic M1 macrophage-induced cytotoxicity, probably at least in part, via the phosphorylation of SHP-1. In addition, the reduced expression of some pro-inflammatory cytokines, namely TNFα, IL-1ß and IL-12, was observed in M1 macrophages that had been cultured with PAEC/TIGIT.


Aorta/metabolism , Cytotoxicity, Immunologic , Endothelial Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Receptors, Immunologic/genetics , Adaptive Immunity , Animals , Aorta/immunology , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , Endothelial Cells/immunology , Gene Expression , Graft Rejection/genetics , Graft Rejection/immunology , Heterografts , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Models, Biological , Phagocytosis/genetics , Phagocytosis/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Immunologic/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Signal Transduction , Swine , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
...