Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 277
1.
J Clin Biochem Nutr ; 74(3): 221-229, 2024 May.
Article En | MEDLINE | ID: mdl-38799134

Growth hormone (GH) exerts multiple effects on different organs directly or via its main mediator, insulin-like growth factor1 (IGF1). In this study, we focused on the novel relationship between GH action and the antiaging hormone α-klotho. Immunofluorescent staining of α-klotho was observed in the renal distal tubules and pituitary glands of somatostatin- and GH-positive cells in wild-type (WT) mice. Treatment of 4-week-old WT mice with GH increased IGF1 mRNA expression in the pituitary gland, liver, heart, kidney, and bone but increased α-klotho mRNA expression only in the pituitary gland, kidney, and bone. Increased α-klotho protein levels were observed in the kidney but not in the pituitary gland. No induction of α-klotho RNA expression by GH was observed in juvenile mice with kidney disease, indicating GH resistance. Furthermore, GH and α-klotho supplementation in HEK293 cells transfected with GHR increased Janus kinase 2 mRNA (a GH downstream signal) expression compared to supplementation with GH alone. In conclusion, we suggest that 1) the kidney is the main source of secreted α-klotho, which is detected in blood by the downstream action of GH, 2) α-klotho induction by GH is resistant in kidney disease, and 3) α-klotho might be an enhanced regulator of GH signaling.

2.
J Med Invest ; 70(1.2): 260-270, 2023.
Article En | MEDLINE | ID: mdl-37164731

BACKGROUND: Inorganic phosphate (Pi) binders are the only pharmacologic treatment approved for hyperphosphatemia. However, Pi binders induce the expression of intestinal Pi transporters and have limited effects on the inhibition of Pi transport. EOS789, a novel pan-Pi transporter inhibitor, reportedly has potent efficacy in treating hyperphosphatemia. We investigated the properties of EOS789 with comparison to a conventional Pi binder. METHODS: Protein and mRNA expression levels of Pi transporters were measured in intestinal and kidney tissues from male Wistar rats fed diets supplemented with EOS789 or lanthanum carbonate (LC). 32Pi permeability was measured in intestinal tissues from normal rats using a chamber. RESULTS: Increased protein levels of NaPi-2b, an intestinal Pi transporter, and luminal Pi removal were observed in rats treated with LC but not in rats treated with EOS789. EOS789 but not LC suppressed intestinal protein levels of the Pi transporter Pit-1 and sodium/hydrogen exchanger isoform 3. 32Pi flux experiments using small intestine tissues from rats demonstrated that EOS789 may affect transcellular Pi transport in addition to paracellular Pi transport. CONCLUSION: EOS789 has differing regulatory effects on Pi metabolism compared to LC. The properties of EOS789 may compensate for the limitations of LC therapy. The combined or selective use of EOS789 and conventional Pi binders may allow tighter control of hyperphosphatemia. J. Med. Invest. 70 : 260-270, February, 2023.


Hyperphosphatemia , Phosphate Transport Proteins , Rats , Male , Animals , Phosphate Transport Proteins/metabolism , Rats, Wistar , Hyperphosphatemia/drug therapy , Intestinal Absorption , Phosphates/metabolism
3.
J Med Invest ; 69(3.4): 173-179, 2022.
Article En | MEDLINE | ID: mdl-36244766

Phosphate (Pi)-containing food additives are used in several forms. Polyphosphate (PPi) salt has more harmful effects than monophosphate (MPi) salt on bone physiology and renal function. This study aimed to analyze the levels of parathyroid hormone PTH and fibroblast growth factor 23 (FGF23) and the expression of renal / intestinal Pi transport-related molecules in mice fed with an MPi or PPi diet. There were no significant differences in plasma Pi concentration and fecal Pi excretion levels between mice fed with the high-MPi and PPi diet. However, more severe tubular dilatation, interstitial fibrosis, and calcification were observed in the kidneys of mice fed with the high PPi diet versus the MPi diet. Furthermore, there was a significant increase in serum FGF23 levels and a decrease in renal phosphate transporter protein expression in mice fed with the PPi diet versus the MPi diet. Furthermore, the high MPi diet was associated with significantly suppressed expression and activity of intestinal alkaline phosphatase protein. In summary, PPi has a more severe effect on renal damage than MPi, as well as induces more FGF23 secretion. Excess FGF23 may be more involved in inflammation, fibrosis, and calcification in the kidney. J. Med. Invest. 69 : 173-179, August, 2022.


Alkaline Phosphatase , Polyphosphates , Animals , Mice , Alkaline Phosphatase/metabolism , Diet , Fibroblast Growth Factors , Fibrosis , Food Additives/metabolism , Kidney/metabolism , Parathyroid Hormone/metabolism , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Phosphates/pharmacology , Polyphosphates/metabolism
4.
Sci Rep ; 12(1): 6353, 2022 04 15.
Article En | MEDLINE | ID: mdl-35428804

Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces expression and secretion of the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) that enhance urinary Pi excretion and prevent the onset of hyperphosphatemia. How FGF23 secretion from bone is increased by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of Transmembrane protein 174 (Tmem174) and observed evidence for gene co-expression networks in NaPi2a and NaPi2c function. Tmem174 is localized in the renal proximal tubules and interacts with NaPi2a, but not NaPi2c. In Tmem174-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, Tmem174-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in Tmem174-KO mice. Thus, Tmem174 is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.


Hyperphosphatemia , Hypophosphatemia , Membrane Proteins , Animals , Fibroblast Growth Factors/metabolism , Hypophosphatemia/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Parathyroid Hormone , Phosphate Transport Proteins , Phosphates/metabolism
5.
Adv Exp Med Biol ; 1362: 99-105, 2022.
Article En | MEDLINE | ID: mdl-35288876

The Recommended Dietary Allowance (RDA) for phosphate in the U.S. is around 700 mg/day for adults. The majority of healthy adults consume almost double the amount of phosphate than the RDA. Lack of awareness, and easy access to phosphate-rich, inexpensive processed food may lead to dietary phosphate overload with adverse health effects, including cardiovascular diseases, kidney diseases and tumor formation. Nutritional education and better guidelines for reporting phosphate content on ingredient labels are necessary, so that consumers are able to make more informed choices about their diets and minimize phosphate consumption. Without regulatory measures, dietary phosphate toxicity is rapidly becoming a global health concern, and likely to put enormous physical and financial burden to the society.


Cardiovascular Diseases , Phosphates , Adult , Cardiovascular Diseases/chemically induced , Diet , Global Health , Health Education , Humans , Phosphates/adverse effects
6.
Nephrol Dial Transplant ; 36(1): 68-75, 2021 01 01.
Article En | MEDLINE | ID: mdl-32879980

BACKGROUND: Phosphate is absorbed in the small intestine via passive flow and active transport.NaPi-IIb, a type II sodium-dependent phosphate transporter, is considered to mediate active phosphate transport in rodents. To study the regulation of intestinal phosphate transport in chronic kidney disease (CKD), we analyzed the expression levels of NaPi-IIb, pituitary-specific transcription factor 1 (PiT-1) and PiT-2 and the kinetics of intestinal phosphate transport using two CKD models. METHODS: CKD was induced in rats via adenine orThy1 antibody injection. Phosphate uptake by intestinal brush border membrane vesicles (BBMV) and the messenger RNA (mRNA) expression of NaPi-IIb, PiT-1 and PiT-2 were analyzed. The protein expression level of NaPi-IIb was measured by mass spectrometry (e.g. liquid chromatography tandem mass spectrometry). RESULTS: In normal rats, phosphate uptake into BBMV consisted of a single saturable component and its Michaelis constant (Km) was comparable to that of NaPi-IIb. The maximum velocity (Vmax) correlated with mRNA and protein levels of NaPi-IIb. In the CKD models, intestinal phosphate uptake consisted of two saturable components. The Vmax of the higher-affinity transport, which is thought to be responsible for NaPi-IIb, significantly decreased and the decrease correlated with reduced NaPi-IIb expression. The Km of the lower-affinity transport was comparable to that of PiT-1 and -2. PiT-1 mRNA expression was much higher than that of PiT-2, suggesting that PiT-1 was mostly responsible for phosphate transport. CONCLUSIONS: This study suggests that the contribution of NaPi-IIb to intestinal phosphate absorption dramatically decreases in rats with CKD and that a low-affinity alternative to NaPi-IIb, in particular PiT-1, is upregulated in a compensatory manner in CKD.


Intestines/physiology , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Renal Insufficiency, Chronic/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Sodium/metabolism , Adenine/toxicity , Animals , Male , Rats , Rats, Inbred F344 , Rats, Wistar , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/classification , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Transcription Factor Pit-1/genetics , Transcription Factor Pit-1/metabolism
7.
Physiol Rep ; 8(3): e14324, 2020 02.
Article En | MEDLINE | ID: mdl-32026654

SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.


Aging/metabolism , Glucuronidase/metabolism , Phosphates/blood , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Fibroblast Growth Factor-23 , Glucuronidase/genetics , Homeostasis , Intestinal Absorption , Intestinal Mucosa/growth & development , Intestinal Mucosa/metabolism , Kidney/growth & development , Kidney/metabolism , Klotho Proteins , Male , Mice , Phosphates/metabolism , Renal Reabsorption , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
8.
Clin Exp Nephrol ; 23(7): 898-907, 2019 Jul.
Article En | MEDLINE | ID: mdl-30895530

BACKGROUND: Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated. METHODS: We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a-/- mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function. RESULTS: The Npt2a-/- experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein. CONCLUSIONS: The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.


Kidney Tubules, Proximal/drug effects , Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Phosphates/metabolism , Protein Kinase C/metabolism , Protein Processing, Post-Translational/drug effects , Renal Reabsorption/drug effects , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Cell Line , Female , Kidney Tubules, Proximal/metabolism , Male , Mice, Knockout , Opossums , Phosphorylation , Protein Stability , Sodium-Phosphate Cotransporter Proteins, Type IIa/deficiency , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Time Factors , Xenopus
9.
Nephron ; 142(2): 135-146, 2019.
Article En | MEDLINE | ID: mdl-30731452

BACKGROUND: Hyperphosphatemia is a major accelerator of complications in chronic kidney disease and dialysis, and phosphate (Pi) binders have been shown to regulate extracellular Pi levels. Research on hyperphosphatemia in mouse models is scarce, and few models display hyperphosphatemia induced by glomerular injury, despite its relevance to human glomerular disease conditions. In this study, we investigated the involvement of hyperphosphatemia in kidney disease progression using a mouse model in which hyperphosphatemia is induced by focal segmental glomerulosclerosis (FSGS). METHODS: We established the NEP25 mouse model in which FSGS-hyperphosphatemia is induced by podocyte injury and evaluated the effect of a Pi binder, sevelamer. RESULTS: After disease induction, we confirmed a gradual increase in serum Pi accompanied by reduced renal function and observed increases in serum FGF23 and PTH. Treatment with sevelamer significantly reduced serum Pi and urinary Pi fractional excretion and suppressed increases in serum FGF23 and PTH. A high dose improved serum creatinine and tubular injury markers, and pathological analysis confirmed amelioration of glomerular and tubular damage. Gene expression and marker analysis suggested protective effects on tubular epithelial cells in the diseased kidney. Compared to disease control, NEP25 mice treated with sevelamer retained their mRNA expression of Klotho, a known FGF23 co-receptor and renoprotective factor. CONCLUSIONS: Hyperphosphatemia caused by renal function decline was observed in a FSGS-induced NEP25 mouse model. Studies using this model showed that Pi regulation had a positive impact on kidney disease progression, and notably on tubular epithelial cell injury, which indicates the importance of Pi regulation in the treatment of kidney disease progression.


Phosphates/metabolism , Podocytes/pathology , Renal Insufficiency, Chronic/pathology , Animals , Calcium/blood , Captopril/pharmacology , Disease Progression , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Glucuronidase/genetics , Kidney Tubules/drug effects , Klotho Proteins , Male , Mice , Parathyroid Hormone/blood , Phosphates/blood , Podocytes/metabolism , RNA, Messenger/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/therapy , Sevelamer/pharmacology
10.
Pflugers Arch ; 471(1): 149-163, 2019 01.
Article En | MEDLINE | ID: mdl-30109410

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.


Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/genetics , Phosphates/blood , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Animals , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factor-23 , Humans , Hypercalciuria/diagnosis , Hypercalciuria/drug therapy , Loss of Function Mutation , Phosphates/therapeutic use , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Vitamin D/blood , Vitamin D/therapeutic use , Vitamins/blood , Vitamins/therapeutic use
11.
Pflugers Arch ; 471(1): 109-122, 2019 01.
Article En | MEDLINE | ID: mdl-30218374

The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.


Kidney/metabolism , Liver/metabolism , NAD/metabolism , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type II/metabolism , Animals , Circadian Rhythm , Fibroblast Growth Factor-23 , Homeostasis , Humans , Phosphates/blood
12.
Clin Exp Nephrol ; 23(3): 313-324, 2019 Mar.
Article En | MEDLINE | ID: mdl-30317447

BACKGROUND: The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS: We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS: We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION: These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.


Kidney/metabolism , Phosphate Transport Proteins/physiology , Phosphates/metabolism , Animals , Cells, Cultured , Familial Hypophosphatemic Rickets/etiology , Humans , Hypercalciuria/etiology , Mice , Opossums , RNA, Small Interfering/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/physiology , Xenopus laevis
13.
Pflugers Arch ; 471(1): 123-136, 2019 01.
Article En | MEDLINE | ID: mdl-30523405

Inorganic phosphate (Pi) secretion from the salivary glands and dietary Pi are key Pi sources. The regulatory mechanisms of Pi homeostasis in the salivary glands are unknown. We investigated how salivary Pi concentrations are regulated by dietary Pi in mouse models. Dietary manipulation significantly changed the levels of Npt2b protein in the salivary gland ductal cells. In addition, rapid feeding on a high-Pi diet increased the saliva Pi concentrations and led to rapid endocytosis of Npt2b in the apical membranes of the duct cells. Global Npt2b± mice exhibited increased salivary Pi concentrations and intestine-specific deletion of Npt2b after high Pi loading increased the salivary Pi concentrations. These findings indicate that Npt2b levels in the salivary glands affect the salivary Pi concentration and are regulated by dietary Pi. Intestinal Npt2b levels might also affect salivary Pi concentrations as well as renal Pi excretion. These findings suggest Pi is endogenously recycled by salivary Pi secretion, intestinal Pi absorption, and renal Pi excretion.


Adaptation, Physiological , Intestinal Mucosa/metabolism , Kidney/metabolism , Phosphorus, Dietary/metabolism , Salivary Glands/metabolism , Animals , Intestinal Absorption , Male , Mice , Mice, Inbred C57BL , Phosphates/metabolism , Renal Elimination , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
14.
Kidney Blood Press Res ; 43(5): 1409-1424, 2018.
Article En | MEDLINE | ID: mdl-30212831

BACKGROUND/AIMS: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.


Alkaline Phosphatase/physiology , Homeostasis , Phosphates/metabolism , Renal Insufficiency/metabolism , Alkaline Phosphatase/genetics , Animals , Biological Transport , Disease Models, Animal , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Phosphates/blood , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
15.
Endocrinology ; 159(7): 2741-2758, 2018 07 01.
Article En | MEDLINE | ID: mdl-29878089

X-linked hypophosphatemia (XLH), the most common form of inheritable rickets, is caused by inactivation of phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and leads to fibroblast growth factor (FGF) 23-dependent renal inorganic phosphate (Pi) wasting. In the present study, we investigated whether maintaining Pi homeostasis with a potent vitamin D3 analog, eldecalcitol [1α,25-dihydroxy-2ß-(3-hydroxypropyloxy) vitamin D3; ED71], could improve hypophosphatemic rickets in a murine model of XLH, the Hyp mouse. Vehicle, ED71, or 1,25-dihydroxyvitamin D was subcutaneously injected five times weekly in wild-type (WT) and Hyp mice for 4 weeks, from 4 to 8 weeks of age. Injection of ED71 into WT mice suppressed the synthesis of renal 1,25-dihydroxyvitamin D and promoted phosphaturic activity. In contrast, administration of ED71 to Hyp mice completely restored renal Pi transport and NaPi-2a protein levels, although the plasma-intact FGF23 levels were further increased. In addition, ED71 markedly increased the levels of the scaffold proteins, renal sodium-hydrogen exchanger regulatory factor 1, and ezrin in the Hyp mouse kidney. Treatment with ED71 increased the body weight and improved hypophosphatemia, the bone volume/total volume, bone mineral content, and growth plate structure in Hyp mice. Thus, ED71 causes FGF23 resistance for phosphate reabsorption and improves rachitic bone phenotypes in Hyp mice. In conclusion, ED71 has opposite effects on phosphate homeostasis in WT and Hyp mice. Analysis of Hyp mice treated with ED71 could result in an additional model for elucidating PHEX abnormalities.


Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Fibroblast Growth Factors/metabolism , Phosphates/metabolism , Vitamin D/analogs & derivatives , Animals , Body Weight/drug effects , Bone Density/drug effects , Disease Models, Animal , Familial Hypophosphatemic Rickets/blood , Familial Hypophosphatemic Rickets/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Male , Mice , Phosphates/blood , Vitamin D/blood , Vitamin D/metabolism , Vitamin D/pharmacology , Vitamin D/therapeutic use
16.
Biopharm Drug Dispos ; 39(5): 256-264, 2018 May.
Article En | MEDLINE | ID: mdl-29682747

Hepatic arterial infusion (HAI) chemotherapy is expected to be a more effective and safer method to treat the hepatic metastasis of pancreatic cancer than intravenous (iv) administration because of higher tumor exposure and lower systemic exposure. To clarify the uptake mechanism of nucleoside anticancer drugs, including gemcitabine (GEM), in pancreatic cancer, we investigated the uptakes of radiolabeled uridine (a general substrate of nucleoside transporters) and GEM in pancreatic cancer cell lines MIA-PaCa2 and As-PC1. Uridine uptake was inhibited by non-labeled GEM and also by S-(4-nitrobenzyl)-6-thioinosine (NBMPR; an inhibitor of equilibrative nucleoside transporters, ENTs) in a concentration-dependent manner, suggesting that ENTs contribute to uridine uptake in pancreatic cancer cells. As for GEM, saturable uptake was mediated by high- and low-affinity components with Km values of micromolar and millimolar orders, respectively. Uptake was inhibited in a concentration-dependent manner by NBMPR and was sodium ion-independent. Moreover, the concentration dependence of uptake in the presence of 0.1 µM NBMPR showed a single low-affinity site. These results indicated that the high- and low-affinity sites correspond to hENT1 and hENT2, respectively. The results indicated that at clinically relevant hepatic concentrations of GEM in GEM-HAI therapy, the metastatic tumor exposure of GEM is predominantly determined by hENT2 under unsaturated conditions, suggesting that hENT2 expression in metastatic tumor would be a candidate biomarker for indicating anticancer therapy with GEM-HAI.


Antimetabolites, Antineoplastic/pharmacokinetics , Deoxycytidine/analogs & derivatives , Equilibrative Nucleoside Transporter 1/metabolism , Equilibrative-Nucleoside Transporter 2/metabolism , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Deoxycytidine/pharmacokinetics , Hepatocytes/metabolism , Humans , Gemcitabine
17.
Kidney Int ; 93(5): 1073-1085, 2018 05.
Article En | MEDLINE | ID: mdl-29398136

Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD+ system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt+/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD+ system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels.


Circadian Rhythm , Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Phosphates/blood , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism , Animals , Biomarkers/blood , Biomarkers/urine , Cytokines/antagonists & inhibitors , Cytokines/deficiency , Cytokines/genetics , Enzyme Inhibitors/pharmacology , Female , Intestines/enzymology , Kidney/enzymology , Liver/enzymology , Male , Mice, 129 Strain , Mice, Inbred C57BL , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/genetics , Phosphates/urine , Renal Elimination , Sodium-Phosphate Cotransporter Proteins, Type IIa/deficiency , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/deficiency , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/deficiency , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Time Factors
18.
Clin Exp Nephrol ; 22(3): 517-528, 2018 Jun.
Article En | MEDLINE | ID: mdl-29128884

BACKGROUND: Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na+-dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial. METHODS: In the present study, we made tamoxifen-inducible Npt2b conditional knockout (CKO) mice to analyze systemic Pi metabolism, including intestinal Pi absorption. RESULTS: Although the Na+-dependent Pi transport in brush-border membrane vesicle uptake levels was significantly decreased in the distal intestine of Npt2b CKO mice compared with control mice, plasma Pi and fecal Pi excretion levels were not significantly different. Data obtained using the intestinal loop technique showed that Pi uptake in Npt2b CKO mice was not affected at a Pi concentration of 4 mM, which is considered the typical luminal Pi concentration after meals in mice. Claudin, which may be involved in paracellular pathways, as well as claudin-2, 12, and 15 protein levels were significantly decreased in the Npt2b CKO mice. Thus, Npt2b deficiency did not affect Pi absorption within the range of Pi concentrations that normally occurs after meals. CONCLUSION: These findings indicate that abnormal Pi metabolism may also be involved in tight junction molecules such as Cldns that are affected by Npt2b deficiency.


Intestinal Absorption , Kidney/metabolism , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/physiology , Animals , Claudins/metabolism , Mice, Knockout , Microvilli/metabolism
19.
Clin Calcium ; 27(11): 1571-1578, 2017.
Article Ja | MEDLINE | ID: mdl-29074829

In elderly people, vitamin D insufficiency may increase the risk of fracture, and may also be involved in the development of sarcopenia or cardiovascular decline. Recent studies using vitamin D receptor knockout mice unveiled multiple functions of vitamin D beyond bone and mineral metabolism. This review describes the actions of vitamin D in skeletal, cardiac, and vascular smooth muscle. Eldecalcitol, an active vitamin D analog developed for the treatment of osteoporosis, also effectively improved skeletal muscle function in vivo, and may have synergistic activities in bone and muscle. Maintaining an optimal vitamin D status protects against fracture, and is expected to have beneficial effects for improving chronic diseases accompanied by muscle function abnormalities.


Muscle, Skeletal/metabolism , Vitamin D/metabolism , Animals , Bone Density , Cell Differentiation , Humans , Receptors, Calcitriol/metabolism
20.
J Nutr Sci Vitaminol (Tokyo) ; 63(4): 256-262, 2017.
Article En | MEDLINE | ID: mdl-28978873

Undernutrition caused by difficulties in masticating is of growing concern among the elderly. Soft diets are often served at nursing homes; however, the styles differ with nursing homes. Improperly modified food texture and consistency may lead to further loss of nutritive value. Therefore, we developed a method to produce a soft diet using chicken. The texture-modified chicken was prepared by boiling a mixture of minced chicken and additive foodstuff that softened the meat. The best food additive was determined through testing cooking process, size after modification and texture. The optimum proportions of each component in the mixture were determined measuring food texture using a creep meter. Teriyaki chicken was cooked using the texture-modified chicken, and provided to a nursing home. The amount of food intake by elderly residents was subsequently surveyed. This study involved 22 residents (1 man and 21 women; mean age 91.4±5.3 y). Consequently, yakifu, which was made from wheat gluten, was the most suitable additive foodstuff. The hardness of the texture-modified chicken, with proportions of minced chicken, yakifu, and water being 50%, 10%, and 40% respectively, was under 40,000 N/m2. The intake amount of the texture-modified chicken of subjects whose intake amount of conventional chicken using chicken thigh was not 100% was significantly higher. These findings suggest that properly modified food textures could contribute to improve the quality of meals by preventing undernutrition among the elderly with mastication difficulties.


Chickens , Cooking/methods , Diet/methods , Food , Nursing Homes , Aged, 80 and over , Animals , Deglutition Disorders , Eating , Female , Food Additives , Glutens , Humans , Male , Malnutrition/prevention & control , Mastication , Nutritive Value , Sensation , Tooth Loss
...