Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
J Hum Genet ; 69(2): 91-99, 2024 Feb.
Article En | MEDLINE | ID: mdl-38102195

More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.


Chromosome Disorders , RNA Splice Sites , RNA Splicing , Female , Humans , Introns/genetics , Exome Sequencing , RNA Splicing/genetics , Base Sequence , Sequence Analysis, RNA , Mosaicism
2.
J Hum Genet ; 68(7): 499-505, 2023 Jul.
Article En | MEDLINE | ID: mdl-36894704

The recent introduction of genome sequencing in genetic analysis has led to the identification of pathogenic variants located in deep introns. Recently, several new tools have emerged to predict the impact of variants on splicing. Here, we present a Japanese boy of Joubert syndrome with biallelic TCTN2 variants. Exome sequencing identified only a heterozygous maternal nonsense TCTN2 variant (NM_024809.5:c.916C >T, p.(Gln306Ter)). Subsequent genome sequencing identified a deep intronic variant (c.1033+423G>A) inherited from his father. The machine learning algorithms SpliceAI, Squirls, and Pangolin were unable to predict alterations in splicing by the c.1033+423G>A variant. SpliceRover, a tool for splice site prediction using FASTA sequence, was able to detect a cryptic exon which was 85-bp away from the variant and within the inverted Alu sequence while SpliceRover scores for these splice sites showed slight increase (donor) or decrease (acceptor) between the reference and mutant sequences. RNA sequencing and RT-PCR using urinary cells confirmed inclusion of the cryptic exon. The patient showed major symptoms of TCTN2-related disorders such as developmental delay, dysmorphic facial features and polydactyly. He also showed uncommon features such as retinal dystrophy, exotropia, abnormal pattern of respiration, and periventricular heterotopia, confirming these as one of features of TCTN2-related disorders. Our study highlights usefulness of genome sequencing and RNA sequencing using urinary cells for molecular diagnosis of genetic disorders and suggests that database of cryptic splice sites predicted in introns by SpliceRover using the reference sequences can be helpful in extracting candidate variants from large numbers of intronic variants in genome sequencing.


Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Male , Humans , Abnormalities, Multiple/genetics , Retina , Eye Abnormalities/genetics , Kidney Diseases, Cystic/genetics , Cerebellum , Mutation , RNA Splice Sites/genetics , RNA Splicing , Exons/genetics , Introns , Membrane Proteins/genetics
3.
Ann Hum Genet ; 87(4): 196-202, 2023 07.
Article En | MEDLINE | ID: mdl-36970932

Biallelic CC2D2A variants are associated with a wide range of neurodevelopmental disorders including Meckel syndrome. Here we report a Japanese girl with Meckel syndrome harboring a pathogenic deep intronic variant (NM_001378615.1:c.1149+3569A>G) and an exonic LINE-1 insertion, which was predicted to cause aberrant splicing by SpliceAI and was detected by TEMP2 program, respectively. RNA analysis using urine-derived cells (UDCs) showed retention of 149-bp intronic sequences, leading to frameshift. Immunoblotting showed marked reduction of CC2D2A protein in the patient. Our report demonstrated that utilization of transposon detection tool and functional analysis using UDCs will increase diagnostic yield of genome sequencing.


RNA Splicing , Female , Humans , Mutation , Exons , Introns
4.
J Hum Genet ; 68(1): 25-31, 2023 Jan.
Article En | MEDLINE | ID: mdl-36257979

KCNB1 encodes the α-subunit of Kv2.1, the main contributor to neuronal delayed rectifier potassium currents. The subunit consists of six transmembrane α helices (S1-S6), comprising the voltage-sensing domain (S1-S4) and the pore domain (S5-P-S6). Heterozygous KCNB1 pathogenic variants are associated with developmental and epileptic encephalopathy. Here we report an individual who shows the milder phenotype compared to the previously reported cases, including delayed language development, mild intellectual disability, attention deficit hyperactivity disorder, late-onset epilepsy responsive to an antiepileptic drug, elevation of serum creatine kinase, and peripheral axonal neuropathy. On the other hand, his brain MRI showed characteristic findings including periventricular heterotopia, polymicrogyria, and abnormal corpus callosum. Exome sequencing identified a novel de novo KCNB1 variant c.574G>A, p.(Ala192Thr) located in the S1 segment of the voltage-sensing domain. Functional analysis using the whole-cell patch-clamp technique in Neuro2a cells showed that the Ala192Thr mutant reduces both activation and inactivation of the channel at membrane voltages in the range of -50 to -30 mV. Our case could expand the phenotypic spectrum of patients with KCNB1 variants, and suggested that variants located in the S1 segment might be associated with a milder outcome of seizures.


Periventricular Nodular Heterotopia , Shab Potassium Channels , Humans , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Epilepsy/etiology , Epilepsy/genetics , Periventricular Nodular Heterotopia/genetics , Phenotype , Seizures/etiology , Seizures/genetics , Shab Potassium Channels/genetics
6.
Hum Genome Var ; 9(1): 7, 2022 Feb 18.
Article En | MEDLINE | ID: mdl-35181663

Variants in ATP1A3 cause neuropsychiatric disorders, especially those characterized by movement disorders. In this study, we performed whole exome sequencing for two patients with movement disorders and identified two novel heterozygous ATP1A3 variants, a missense c.2408G>A variant and an indel c.2672_2688+10delinsCAG variant. The unique indel variant occurred at the exon-intron boundary at the 3' end of exon 19, and mRNA analysis revealed that this variant caused in-frame indel alteration at the Ser891_Trp896 residue.

7.
Neurogenetics ; 23(2): 129-135, 2022 04.
Article En | MEDLINE | ID: mdl-35147852

GNAO1 variants are associated with a wide range of neurodevelopmental disorders including epileptic encephalopathies and movement disorders. It has been reported that some GNAO1 variants are associated with movement disorders, and the 207-246 amino acid region was proposed as a mutational hotspot. Here, we report an intronic variant (NM_020988.3:c.724-8G>A) in GNAO1 in a Japanese girl who showed mild developmental delay and movement disorders including dystonia and myoclonus. Her movement disorders were improved by deep brain stimulation treatment as previously reported. This variant has been recurrently reported in four patients and was transmitted from her mother who possessed the variant as low-prevalent mosaicism. Using RNA extracted from lymphoblastoid cells derived from the patient, we demonstrated that the variant caused abnormal splicing of in-frame 6-bp intronic retention, leading to 2 amino acid insertion (p.Thr241_Asn242insProGln). Immunoblotting and immunostaining using WT and mutant GNAO1 vectors showed no significant differences in protein expression levels, but the cellular localization pattern of this mutant was partially shifted to the cytoplasm whereas WT was exclusively localized in the cellular membrane. Our report first clarified abnormal splicing and resulting mutant protein caused by the c.724-8G>A variant.


Deep Brain Stimulation , Movement Disorders , Amino Acids , Female , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Movement Disorders/genetics , Mutation
8.
J Hum Genet ; 67(7): 387-392, 2022 Jul.
Article En | MEDLINE | ID: mdl-35067677

Exome sequencing and panel testing have improved diagnostic yield in genetic analysis by comprehensively detecting pathogenic variants in exonic regions. However, it is important to identify non-exonic pathogenic variants to further improve diagnostic yield. Here, we present a female proband and her father who is diagnosed with Marfan syndrome, a systemic connective tissue disorder caused by pathogenic variants in FBN1. There are also two affected individuals in the siblings of the father, indicating the genetic basis in this family. However, panel testing performed by two institutions reported no causal variants. To further explore the genetic basis of the family, we performed genome sequencing of the proband and RNA sequencing of urinary cells derived from urine samples of the proband and her father because FBN1 is strongly expressed in urinary cells though it is poorly expressed in peripheral blood mononuclear cells. Genome sequencing identified a rare intronic variant (c.5789-15G>A) in intron 47 of FBN1 (NM_000138.4), which was transmitted from her father. RNA sequencing revealed allelic imbalance (monoallelic expression) of FBN1, retention of intron 47, and fewer aberrant transcripts utilizing new acceptor sites within exon 48, which were confirmed by RT-PCR. These results highlighted urinary cells as clinically accessible tissues for RNA sequencing if disease-causing genes are not sufficiently expressed in the blood, and the usefulness of multi-omics analysis for molecular diagnosis of genetic disorders.


Fibrillin-1 , Marfan Syndrome , RNA Splicing , Urine , Female , Fibrillin-1/genetics , Humans , Leukocytes, Mononuclear , Male , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Mutation , Sequence Analysis, RNA , Urine/cytology
9.
Child Neurol Open ; 8: 2329048X211048613, 2021.
Article En | MEDLINE | ID: mdl-34660840

D-bifunctional protein (DBP) deficiency is a peroxisomal disorder with a high degree of phenotypic heterogeneity. Some patients with DBP deficiency develop progressive leukodystrophy in childhood. We report a 6-year-old boy with moderate hearing loss who presented with developmental regression. Brain magnetic resonance imaging demonstrated progressive leukodystrophy. However, very long chain fatty acids (VLCFAs) in the plasma were at normal levels. Whole-exome sequencing revealed compound heterozygous variants in HSD17B4 (NM_000414.3:c.[350A > T];[394C > T], p.[[Asp117Val]];[[Arg132Trp]]). The c.394C > T variant has been identified in patients with DBP deficiency and is classified as likely pathogenic, while the c.350A > T variant was novel and classified as uncertain significance. Although one of the two variants was classified as uncertain significance, an accumulation of phytanic and pristanic acids was identified in the patient, confirming type III DBP deficiency. DBP deficiency should be considered as a diagnosis in children with progressive leukodystrophy and hearing loss even if VLCFAs are within normal levels.

10.
J Hum Genet ; 66(12): 1189-1192, 2021 Dec.
Article En | MEDLINE | ID: mdl-34168248

Brain malformations have heterogeneous genetic backgrounds. Tubulinopathies are a wide range of brain malformations caused by variants in tubulin and microtubules-associated genes. Recently biallelic variants in TTC5, also known as stress responsive activator of p300, have been reported in 11 patients from seven families with developmental delay, intellectual disability, and brain malformations. Here, we report compound heterozygous frameshift variants in TTC5 in a Japanese boy who showed severe psychomotor developmental delay and pseudobulbar palsy with growth failure. Brain magnetic resonance imaging showed a simplified gyral pattern and undetectable anterior limb of the internal capsule, suggesting tubulinopathies. Immunoblotting using lymphoblastoid cells derived from the patient showed undetectable TTC5 protein. Ttc5 silencing by RNA interference in Neuro2a cells reduced Tubulin ß3 protein level and caused abnormal cell cycle. Our report suggests a possible link between TTC5-related brain malformation and tubulinopathies.


Brain/abnormalities , Frameshift Mutation , Genetic Predisposition to Disease , Nervous System Malformations/diagnosis , Nervous System Malformations/genetics , Phenotype , Transcription Factors/genetics , Tubulin/genetics , Brain/diagnostic imaging , Genetic Association Studies , Humans , Japan , Magnetic Resonance Imaging , Male , Tubulin/metabolism
11.
J Hum Genet ; 66(11): 1061-1068, 2021 Nov.
Article En | MEDLINE | ID: mdl-33958710

Corpus callosum anomalies (CCA) is a common congenital brain anomaly with various etiologies. Although one of the most important etiologies is genetic factors, the genetic background of CCA is heterogenous and diverse types of variants are likely to be causative. In this study, we analyzed 16 Japanese patients with corpus callosum anomalies to delineate clinical features and the genetic background of CCAs. We observed the common phenotypes accompanied by CCAs: intellectual disability (100%), motor developmental delay (93.8%), seizures (60%), and facial dysmorphisms (50%). Brain magnetic resonance imaging showed colpocephaly (enlarged posterior horn of the lateral ventricles, 84.6%) and enlarged supracerebellar cistern (41.7%). Whole exome sequencing revealed genetic alterations in 9 of the 16 patients (56.3%), including 8 de novo alterations (2 copy number variants and variants in ARID1B, CDK8, HIVEP2, and TCF4) and a recessive variant of TBCK. De novo ARID1B variants were identified in three unrelated individuals, suggesting that ARID1B variants are major genetic causes of CCAs. A de novo TCF4 variant and somatic mosaic deletion at 18q21.31-qter encompassing TCF4 suggest an association of TCF4 abnormalities with CCAs. This study, which analyzes CCA patients usung whole exome sequencing, demonstrates that comprehensive genetic analysis would be useful for investigating various causal variants of CCAs.


Agenesis of Corpus Callosum/diagnosis , Brain/diagnostic imaging , Congenital Abnormalities/diagnosis , Nervous System Malformations/diagnosis , Adolescent , Adult , Agenesis of Corpus Callosum/complications , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Brain/pathology , Brain Diseases/complications , Brain Diseases/diagnosis , Brain Diseases/genetics , Brain Diseases/pathology , Child , Child, Preschool , Congenital Abnormalities/genetics , Congenital Abnormalities/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , DNA Copy Number Variations/genetics , Female , Humans , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Japan , Lateral Ventricles/abnormalities , Lateral Ventricles/pathology , Male , Motor Disorders/complications , Motor Disorders/diagnosis , Motor Disorders/genetics , Motor Disorders/pathology , Mutation/genetics , Nervous System Malformations/complications , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Phenotype , Exome Sequencing , Young Adult
12.
Brain Dev ; 43(7): 804-808, 2021 Aug.
Article En | MEDLINE | ID: mdl-33827760

INTRODUCTION: SCN8A-related epilepsy has various phenotypes. In particular, patients with developmental and epileptic encephalopathy (DEE) are resistant to antiepileptic drugs and may present with autonomic symptoms, such as marked bradycardia and apnea during seizures, and thus have an increased risk of sudden death. Herein, we report a case of very severe SCN8A-related epilepsy necessitating cardiac pacemaker implantation because of repetitive ictal asystole. CASE REPORT: The patient was a 14-month-old girl. Tremor and generalized tonic seizure occurred after birth. During seizures, bradycardia and perioral cyanosis occurred, and then, after developing tachycardia and apnea, marked bradycardia and generalized cyanosis occurred, which sometimes resulted in ictal asystole requiring cardiopulmonary resuscitation. Her seizures were refractory to antiepileptic drugs. As the seizures requiring resuscitation did not decrease, cardiac pacemaker implantation was performed four months after birth. Exome sequencing revealed a heterozygous de novo variant in SCN8A (NM_014191.3:c.4934T>C,p.(Met1645Thr)). Even though phenytoin was effective, seizures with bradycardia remained approximately once a month, and pacemaker activity was observed. CONCLUSIONS: This is, to our knowledge, the first reported case of SCN8A-related DEE in whom pacemaker implantation was performed. Pacemaker implantation should be considered as a treatment option for critical patients with SCN8A-related DEE as in the present case, because the incidence of sudden unexpected death in epilepsy is reported to be approximately 10% in patients with SCN8A-related DEE.


Brain Diseases/genetics , Epilepsy/genetics , Heart Arrest/therapy , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurodevelopmental Disorders/genetics , Pacemaker, Artificial , Epilepsy/complications , Female , Heart Arrest/etiology , Humans , Infant
13.
Neurol Genet ; 6(6): e524, 2020 Dec.
Article En | MEDLINE | ID: mdl-33134519

OBJECTIVE: To further clarify the molecular pathogenesis of RNA polymerase III (Pol III)-related leukodystrophy caused by biallelic POLR1C variants at a cellular level and potential effects on its downstream genes. METHODS: Exome analysis and molecular functional studies using cell expression and long-read sequencing analyses were performed on 1 family with hypomyelinating leukodystrophy showing no clinical and MRI findings characteristic of Pol III-related leukodystrophy other than hypomyelination. RESULTS: Biallelic novel POLR1C alterations, c.167T>A, p.M56K and c.595A>T, p.I199F, were identified as causal variants. Functional analyses showed that these variants not only resulted in altered protein subcellular localization and decreased protein expression but also caused abnormal inclusion of introns in 85% of the POLR1C transcripts in patient cells. Unexpectedly, allelic segregation analysis in each carrier parent revealed that each heterozygous variant also caused the inclusion of introns on both mutant and wild-type alleles. These findings suggest that the abnormal splicing is not direct consequences of the variants, but rather reflect the downstream effect of the variants in dysregulating splicing of POLR1C, and potentially other target genes. CONCLUSIONS: The lack of characteristic clinical findings in this family confirmed the broad clinical spectrum of Pol III-related leukodystrophy. Molecular studies suggested that dysregulation of splicing is the potential downstream pathomechanism for POLR1C variants.

14.
Congenit Anom (Kyoto) ; 60(4): 120-125, 2020 Jul.
Article En | MEDLINE | ID: mdl-31837184

CRISPR-Cas9 technology has been used in various studies; however, it has also been found to introduce unexpected structural alternations. In this study, we used nanopore sequencing to characterize an unexpected structural alteration of mirror-image duplicated genes in a mouse line, in which we aimed to delete a part of the duplicated genes using genome editing. We removed low-molecular-weight DNA fragments and increased the input, which led to improved sequence performance. With 14.9 Gb input for whole-genome analysis, we detected a complex structural alteration involving inversion and deletion, which appears to be difficult to characterize with short-read sequencers. Therefore, our study clearly showed the utility of nanopore sequencing for characterizing unexpected complex structural alterations caused by genome editing.


CRISPR-Cas Systems/genetics , Gene Duplication/genetics , Gene Editing , Nanopore Sequencing , Animals , DNA/genetics , Humans , Mice
15.
Mol Genet Genomic Med ; 7(8): e814, 2019 08.
Article En | MEDLINE | ID: mdl-31231989

BACKGROUND: Congenital disorders of glycosylation (CDGs) are genetic diseases caused by pathogenic variants of genes involved in protein or lipid glycosylation. De novo variants in the SLC35A2 gene, which encodes a UDP-galactose transporter, are responsible for CDGs with an X-linked dominant manner. Common symptoms related to SLC35A2 variants include epilepsy, psychomotor developmental delay, hypotonia, abnormal facial and skeletal features, and various magnetic resonance imaging (MRI) findings. METHODS: Whole-exome sequencing was performed on the patient's DNA, and candidate variants were confirmed by Sanger sequencing. cDNA analysis was performed to assess the effect of the splice site variant using peripheral leukocytes. The X-chromosome inactivation pattern was studied using the human androgen receptor assay. RESULTS: We identified a de novo splice site variant in SLC35A2 (NM_005660.2: c.274+1G>A) in a female patient who showed severe developmental delay, spastic paraplegia, mild cerebral atrophy, and delayed myelination on MRI, but no seizures. The variant led to an aberrant splicing resulting in an in-frame 33-bp insertion, which caused an 11-amino acid insertion in the presumptive cytoplasmic loop. X-inactivation pattern was random. Partial loss of galactose and sialic acid of the N-linked glycans of serum transferrin was observed. CONCLUSION: This case would expand the phenotypic spectrum of SLC35A2-related disorders to delayed myelination with spasticity and no seizures.


Congenital Disorders of Glycosylation/genetics , Developmental Disabilities/genetics , Monosaccharide Transport Proteins/genetics , Myelin Sheath/pathology , Paraplegia/genetics , Child, Preschool , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/pathology , Developmental Disabilities/diagnosis , Developmental Disabilities/pathology , Female , Humans , Internal Capsule/diagnostic imaging , Internal Capsule/pathology , Magnetic Resonance Imaging , Paraplegia/diagnosis , Paraplegia/pathology , RNA Splicing , Severity of Illness Index , Exome Sequencing
16.
Biochem Biophys Res Commun ; 384(4): 461-5, 2009 Jul 10.
Article En | MEDLINE | ID: mdl-19410553

Insulin secretion is precisely regulated by blood glucose with unique biphasic pattern. The regulatory mechanism of the second-phase insulin release is unclear. In this study, we report that DOC2b (double C2 domain protein isoform b), a SNARE related protein, was associated with insulin vesicles and translocated to plasma membrane within several minutes upon high-glucose stimulation followed by an interaction with syntaxin4, but not syntaxin1. This binding specificity and the time course of DOC2b translocation were suitable for the regulation of second-phase insulin release. Increased DOC2b expression enhanced glucose-stimulated insulin secretion. In contrast, silencing DOC2b inhibited delayed release of insulin, without affecting rapid (approximately 7min) phase secretion. Interestingly, DOC2b had no effects on KCl-triggered insulin release. These data suggest that DOC2b may be a regulator for delayed (second-phase) insulin secretion in MIN6 cells.


Calcium-Binding Proteins/metabolism , Glucose/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Nerve Tissue Proteins/metabolism , SNARE Proteins/metabolism , Animals , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Glucose/pharmacology , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/ultrastructure , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Secretory Vesicles/metabolism
17.
Am J Physiol Gastrointest Liver Physiol ; 296(3): G524-33, 2009 Mar.
Article En | MEDLINE | ID: mdl-19147806

Cellular retinol-binding protein type II (CRBPII) is abundantly expressed in the small intestinal enterocytes of many vertebrates and plays important physiological roles in intestinal absorption, transport, and metabolism of vitamin A. In the present study, we investigated regulation of human CRBPII gene expression using human intestinal Caco-2 BBe cells. We found that the human CRBPII gene contained a direct repeat 1 (DR-1)-like nuclear receptor response element in the proximal promoter region and that endogenous hepatocyte nuclear factor-4alpha (HNF-4alpha) was a major transcription factor binding to the DR-1-like element. Cotransfection of HNF-4alpha expression vector transactivated the human CRBPII gene promoter activity, whereas mutation of the DR-1-like element abolished the promoter activity. Stably transfected Caco-2 BBe cells overexpressing HNF-4alpha significantly increased endogenous CRBPII gene expression and retinyl ester synthesis. Reduction of HNF-4alpha protein levels by HNF-4alpha small interference RNA decreased CRBPII gene expression. Caco-2 BBe cells treated with phorbol 12-myristate 13-acetate, a protein kinase C activator, decreased nuclear HNF-4alpha protein level and binding activity to the human CRBPII gene DR-1-like element, as well as CRBPII gene expression. Moreover, nuclear HNF-4alpha protein levels, HNF-4alpha protein binding to human CRBPII DR-1-like elements, and CRBPII gene expression level were coordinately increased during Caco-2 BBe cell differentiation. These results suggest that HNF-4alpha is an important transcriptional factor that regulates human CRBPII gene expression and provide the possibility for a novel function of HNF-4alpha in the regulation of human intestinal vitamin A absorption and metabolism.


Hepatocyte Nuclear Factor 4/metabolism , Intestinal Absorption/physiology , Intestine, Small/physiology , Retinol-Binding Proteins, Cellular/genetics , Vitamin A/pharmacokinetics , 5' Flanking Region/physiology , Base Sequence , Caco-2 Cells , Esterification , Gene Expression Regulation/physiology , Hepatocyte Nuclear Factor 4/genetics , Humans , Intestine, Small/cytology , Molecular Sequence Data , Promoter Regions, Genetic/physiology , RNA, Small Interfering , Receptors, Cytoplasmic and Nuclear/metabolism , Retinol-Binding Proteins, Cellular/metabolism , Transcription, Genetic/physiology , Transfection , Vitamin A/biosynthesis
18.
Diabetes ; 58(2): 377-84, 2009 Feb.
Article En | MEDLINE | ID: mdl-19033398

OBJECTIVE: Insulin stimulates glucose uptake in skeletal muscle and adipose tissues primarily by stimulating the translocation of vesicles containing a facilitative glucose transporter, GLUT4, from intracellular compartments to the plasma membrane. The formation of stable soluble N-ethyl-maleimide-sensitive fusion protein [NSF] attachment protein receptor (SNARE) complexes between vesicle-associated membrane protein-2 (VAMP-2) and syntaxin-4 initiates GLUT4 vesicle docking and fusion processes. Additional factors such as munc18c and tomosyn were reported to be negative regulators of the SNARE complex assembly involved in GLUT4 vesicle fusion. However, despite numerous investigations, the positive regulators have not been adequately clarified. RESEARCH DESIGN AND METHODS: We determined the intracellular localization of DOC2b by confocal immunoflorescent microscopy in 3T3-L1 adipocytes. Interaction between DOC2b and syntaxin-4 was assessed by the yeast two-hybrid screening system, immunoprecipitation, and in vitro glutathione S-transferase (GST) pull-down experiments. Cell surface externalization of GLUT4 and glucose uptake were measured in the cells expressing DOC2b constructs or silencing DOC2b. RESULTS: Herein, we show that DOC2b, a SNARE-related protein containing double C2 domains but lacking a transmembrane region, is translocated to the plasma membrane upon insulin stimulation and directly associates with syntaxin-4 in an intracellular Ca(2+)-dependent manner. Furthermore, this process is essential for triggering GLUT4 vesicle fusion. Expression of DOC2b in cultured adipocytes enhanced, while expression of the Ca(2+)-interacting domain mutant DCO2b or knockdown of DOC2b inhibited, insulin-stimulated glucose uptake. CONCLUSIONS: These findings indicate that DOC2b is a positive SNARE regulator for GLUT4 vesicle fusion and mediates insulin-stimulated glucose transport in adipocytes.


Adipocytes/metabolism , Calcium-Binding Proteins/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Nerve Tissue Proteins/metabolism , Qa-SNARE Proteins/metabolism , 3T3-L1 Cells , Adenoviridae/genetics , Amino Acid Sequence , Analysis of Variance , Animals , Biological Transport/drug effects , Blotting, Northern , Calcium/metabolism , Calcium-Binding Proteins/genetics , Deoxyglucose/metabolism , Glucose Transporter Type 4/genetics , Immunoblotting , Immunoprecipitation , Mice , Microscopy, Fluorescence , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Protein Binding , Qa-SNARE Proteins/genetics , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
19.
Biochem Biophys Res Commun ; 369(4): 1204-8, 2008 May 16.
Article En | MEDLINE | ID: mdl-18343214

Insulin stimulates glucose uptake in fat and muscle primarily by stimulating the translocation of vesicles containing facilitative glucose transporters, GLUT4, from intracellular compartments to the plasma membrane. Although cell surface externalization of GLUT4 is critical for glucose transport, the mechanism regulating cell surface GLUT4 remains unknown. Using a yeast two-hybrid screening system, we have screened GLUT4-binding proteins, and identified a novel glycosyl phosphatidyl inositol (GPI)-linked proteoglycan, Glypican3 (GPC3). We confirmed their interaction using immunoprecipitation and a GST pull-down assay. We also revealed that GPC3 and GLUT4 to co-localized at the plasma membrane, using immunofluorescent microscopy. Furthermore, we observed that glucose uptake in GPC3-overexpressing adipocytes was increased by 30% as compared to control cells. These findings suggest that GPC3 may play roles in glucose transport through GLUT4.


Glucose Transporter Type 4/metabolism , Glucose/metabolism , Glypicans/metabolism , Animals , Cell Line , Cell Membrane/chemistry , Cell Membrane/metabolism , Glucose Transporter Type 4/analysis , Glucose Transporter Type 4/genetics , Glypicans/analysis , Glypicans/isolation & purification , Humans , Immunoprecipitation , Insulin/metabolism , Insulin/pharmacology , Mice , Rats , Two-Hybrid System Techniques
20.
Zoolog Sci ; 21(6): 639-48, 2004 Jun.
Article En | MEDLINE | ID: mdl-15226586

To examine the synthesis and release of steroids in intestinal tissues from cynomolgus monkeys (Macaca fascicularis), we performed the following experiments: 1) incubated prepared intestinal tissues with [(3)H]testosterone to study the conversion to other steroids; 2) used a radioimmunoassay to determine steroid levels in six segments of intestinal tissues and contents (duodenum, jejunum, ileum, cecum, colon, and rectum); 3) localized testosterone in the six intestinal segments by immunofluorescence histochemistry; and 4) determined steroid levels in feces from males and females of various ages by radioimmunoassay to examine a correlation between steroid levels and age or sex. In prepared intestinal tissues, testosterone was converted into androstenedione, 5 alpha-dihydrotestosterone, and an unidentified substance; all of these steroids were detected in all segments of the intestinal tissues and contents by radioimmunoassay. Immunofluorescence showed that testosterone was located in all segments of intestinal epithelia. Androstenedione, testosterone, 5 alpha-dihydrotestosterone, and the unidentified substance were also detected in feces, and their levels were not affected by the age or sex of the animal. The present findings in cynomolgus monkeys led us to conclude that 1) steroids were synthesized in the intestines; 2) intestinal steroids were released from the six intestinal tissues to the intestinal cavities and excreted outside the body with feces; and 3) intestinal steroids were released irrespective of age or sex of the animal. Intestinal steroids seem to be paracrine or exocrine agents and to have different characteristics from classical serum steroids.


Intestinal Mucosa/metabolism , Macaca fascicularis/metabolism , Steroids/biosynthesis , Age Factors , Animals , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Feces/chemistry , Female , Fluorescent Antibody Technique , Immunohistochemistry , Male , Radioimmunoassay , Sex Factors , Testosterone/metabolism , Tritium/metabolism
...