Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38829839

RESUMEN

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Asunto(s)
Transferasas Alquil y Aril , Giberelinas , Oryza , Proteínas de Plantas , Giberelinas/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/química , Oryza/enzimología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Dominio Catalítico , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos de Tipo Kaurano/química , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Diterpenos/metabolismo , Diterpenos/química , Dominios Proteicos , Catálisis
2.
Biosci Biotechnol Biochem ; 88(1): 63-69, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37791963

RESUMEN

MdDOX-Co, the ectopic expression of which is considered to cause the apple columnar tree shape, belongs to the 2-oxoglutarate-dependent dioxygenase (2ODD) family. It adds a hydroxyl group to position 12 of gibberellins (GAs). However, the 2ODD enzymes related to GA biosynthesis and catabolism are phylogenetically distinct from MdDOX-Co. Thus, it is possible that substrates other than GAs exist in MdDOX-Co. To identify the previously unidentified substrate(s) of MdDOX-Co, we searched for MdDOX-Co-specific inhibitors. Chemical screening using gas chromatography-mass spectrometry was performed to investigate the effects of 2400 compounds that inhibited the catalytic reaction of MdDOX-Co, but not the catabolic reaction of GA 2-oxidase, an enzyme involved in GA catabolism. By applying two positive compounds in Arabidopsis, a chemical 3-((2-chloro-6-fluorobenzyl)thio)-5,7-dimethyl-5H-pyrazolo[3,4-e][1,4,2]dithiazine-1,1-dioxide designated as TPDD that did not inhibit GA biosynthesis was selected. The structure-activity relationships among the TPDD analogs were also obtained.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/farmacología , Giberelinas/metabolismo , Oxigenasas de Función Mixta/metabolismo
3.
Plant Cell ; 35(11): 4111-4132, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37597168

RESUMEN

Gibberellins (GAs) are key phytohormones that regulate growth, development, and environmental responses in angiosperms. From an evolutionary perspective, all major steps of GA biosynthesis are conserved among vascular plants, while GA biosynthesis intermediates such as ent-kaurenoic acid (KA) are also produced by bryophytes. Here, we show that in the liverwort Marchantia polymorpha, KA and GA12 are synthesized by evolutionarily conserved enzymes, which are required for developmental responses to far-red light (FR). Under FR-enriched conditions, mutants of various biosynthesis enzymes consistently exhibited altered thallus growth allometry, delayed initiation of gametogenesis, and abnormal morphology of gamete-bearing structures (gametangiophores). By chemical treatments and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, we confirmed that these phenotypes were caused by the deficiency of some GA-related compounds derived from KA, but not bioactive GAs from vascular plants. Transcriptome analysis showed that FR enrichment induced the up-regulation of genes related to stress responses and secondary metabolism in M. polymorpha, which was largely dependent on the biosynthesis of GA-related compounds. Due to the lack of canonical GA receptors in bryophytes, we hypothesize that GA-related compounds are commonly synthesized in land plants but were co-opted independently to regulate responses to light quality change in different plant lineages during the past 450 million years of evolution.


Asunto(s)
Giberelinas , Marchantia , Cromatografía Liquida , Giberelinas/metabolismo , Luz , Marchantia/metabolismo , Espectrometría de Masas en Tándem
4.
FEBS Lett ; 597(16): 2133-2142, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385722

RESUMEN

This is the first report on the molecular characterization of isoprene synthase (ISPS) from the moss Calohypnum plumiforme. After isoprene emission from C. plumiforme was confirmed, the cDNA encoding C. plumiforme ISPS (CpISPS) was narrowed down using a genome database associated with protein structure prediction, and a CpISPS gene was identified. The recombinant CpISPS, produced in Escherichia coli, converted dimethylallyl diphosphate to isoprene. Phylogenetic analysis indicated similarity between the amino acid sequences of CpISPS and moss diterpene cyclases (DTCs) but not ISPSs of higher plants, implying that CpISPS is derived from moss DTCs and is evolutionarily unrelated to canonical ISPSs of higher plants. CpISPS is a novel class I cyclase of the terpene synthase-c subfamily harboring αß domains. This study will help further study of isoprene biosynthesis and the physiological functions of isoprene in mosses.


Asunto(s)
Transferasas Alquil y Aril , Briófitas , Diterpenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Briófitas/genética , Briófitas/metabolismo , Butadienos , Evolución Molecular
5.
J Pestic Sci ; 48(2): 47-53, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37361487

RESUMEN

To elucidate the cause of brown stem rot in the adzuki bean, we re-evaluated the phytotoxins produced in cultures of the causative agent, Phialophora gregata f. sp. adzukicola. The ethyl acetate-soluble acidic fraction of the culture, as well as the neutral fraction, inhibited the growth of alfalfa seedlings. In the neutral fraction, known phytotoxins gregatin A, B, and C or D and penicilliol A were present. Although the phytotoxins in the acidic fraction were unstable, liquid chromatography-mass spectrometry analysis of the partially purified material suggested that one phytotoxin present was the non-methylated gregatin desmethyl-gregatin A (gregatinic acid A).

6.
Sci Adv ; 8(44): eadd1278, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322663

RESUMEN

Strigolactones (SLs) are a plant hormone inhibiting shoot branching/tillering and a rhizospheric, chemical signal that triggers seed germination of the noxious root parasitic plant Striga and mediates symbiosis with beneficial arbuscular mycorrhizal fungi. Identifying specific roles of canonical and noncanonical SLs, the two SL subfamilies, is important for developing Striga-resistant cereals and for engineering plant architecture. Here, we report that rice mutants lacking canonical SLs do not show the shoot phenotypes known for SL-deficient plants, exhibiting only a delay in establishing arbuscular mycorrhizal symbiosis, but release exudates with a significantly decreased Striga seed-germinating activity. Blocking the biosynthesis of canonical SLs by TIS108, a specific enzyme inhibitor, significantly lowered Striga infestation without affecting rice growth. These results indicate that canonical SLs are not the determinant of shoot architecture and pave the way for increasing crop resistance by gene editing or chemical treatment.

7.
Plant J ; 105(4): 1026-1034, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211343

RESUMEN

Ectopic expression of the apple 2-oxoglutarate-dependent dioxygenase (DOX, 2ODD) gene, designated MdDOX-Co, is thought to cause the columnar shape of apple trees. However, the mechanism underlying the formation of such a unique tree shape remains unclear. To solve this problem, we demonstrated that Arabidopsis thaliana overexpressing MdDOX-Co contained reduced levels of biologically active gibberellin (GA) compared with wild type. In summary: (i) with biochemical approaches, the gene product MdDOX-Co was shown to metabolize active GA A4 (GA4 ) to GA58 (12-OH-GA4 ) in vitro. MdDOX-Co also metabolized its precursors GA12 and GA9 to GA111 (12-OH-GA12 ) and GA70 (12-OH-GA9 ), respectively; (ii) Of the three 12-OH-GAs, GA58 was still active physiologically, but not GA70 or GA111 ; (iii) Arabidopsis MdDOX-Co OE transformants converted exogenously applied deuterium-labeled (d2 )-GA12 to d2 -GA111 but not to d2 -GA58 , whereas transformants converted applied d2 -GA9 to d2 -GA58 ; (iv) GA111 is converted poorly to GA70 by GA 20-oxidases in vitro when GA12 is efficiently metabolized to GA9 ; (v) no GA58 was detected endogenously in MdDOX-Co OE transformants. Overall, we conclude that 12-hydroxylation of GA12 by MdDOX-Co prevents the biosynthesis of biologically active GAs in planta, resulting in columnar phenotypes.


Asunto(s)
Genes de Plantas/genética , Giberelinas/metabolismo , Malus/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Árboles/genética , Arabidopsis , Dioxigenasas/metabolismo , Genes de Plantas/fisiología , Ácidos Cetoglutáricos/metabolismo , Malus/crecimiento & desarrollo , Malus/metabolismo , Malus/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/fisiología
8.
Plant Cell Physiol ; 61(11): 1861-1868, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33057650

RESUMEN

Plants synthesize gibberellin (GA), a diterpenoid hormone, via ent-kaurenoic acid (KA) oxidation. GA has not been detected in the moss Physcomitrium patens despite its ability to synthesize KA. It was recently shown that a KA metabolite, 3OH-KA, was identified as an active regulator of protonema differentiation in P. patens. An inactive KA metabolite, 2OH-KA, was also identified in the moss, as was KA2ox, which is responsible for converting KA to 2OH-KA. In this review, we mainly discuss the GA biosynthetic gene homologs identified and characterized in bryophytes. We show the similarities and differences between the OH-KA control of moss and GA control of flowering plants. We also discuss using recent genomic studies; mosses do not contain KAO, even though other bryophytes do. This absence of KAO in mosses corresponds to the presence of KA2ox, which is absent in other vascular plants. Thus, given that 2OH-KA and 3OH-KA were isolated from ferns and flowering plants, respectively, vascular plants may have evolved from ancestral bryophytes that originally produced 3OH-KA and GA.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Diterpenos/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Evolución Biológica , Bryopsida/metabolismo , Bryopsida/fisiología , Diterpenos de Tipo Kaurano/metabolismo , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
9.
Plants (Basel) ; 9(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993191

RESUMEN

Orange leafhopper Cicadulina bipunctata feeding induces wallaby ear symptoms, namely growth suppression and gall formation characterized by severe swelling of leaf veins, on various Poaceae, thereby leading to low crop yields. Here, we investigated the development of wallaby ear symptoms on rice seedlings due to C. bipunctata feeding. After confirming that C. bipunctata feeding induces growth suppression and gall formation on rice seedlings, we further demonstrated that gall formation score decreased with decreasing levels of nitrogen in the medium and that C. bipunctata feeding induces the expression levels of nitrogen transporter genes. These gene expression changes may participate in the nutrient accumulation observed in galled tissues and in gall formation. In addition, these expression changes should induce growth promotion but the inhibition of gibberellin signaling by C. bipunctata feeding might be the reason why growth is suppressed. Treatment with plant growth regulators did not affect gall formation, suggesting the existence of a complex gall formation mechanism by C. bipunctata feeding.

10.
Proc Natl Acad Sci U S A ; 117(22): 12472-12480, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409606

RESUMEN

Momilactones are bioactive diterpenoids that contribute to plant defense against pathogens and allelopathic interactions between plants. Both cultivated and wild grass species of Oryza and Echinochloa crus-galli (barnyard grass) produce momilactones using a biosynthetic gene cluster (BGC) in their genomes. The bryophyte Calohypnum plumiforme (formerly Hypnum plumaeforme) also produces momilactones, and the bifunctional diterpene cyclase gene CpDTC1/HpDTC1, which is responsible for the production of the diterpene framework, has been characterized. To understand the molecular architecture of the momilactone biosynthetic genes in the moss genome and their evolutionary relationships with other momilactone-producing plants, we sequenced and annotated the C. plumiforme genome. The data revealed a 150-kb genomic region that contains two cytochrome P450 genes, the CpDTC1/HpDTC1 gene and the "dehydrogenase momilactone A synthase" gene tandemly arranged and inductively transcribed following stress exposure. The predicted enzymatic functions in yeast and recombinant assay and the successful pathway reconstitution in Nicotiana benthamiana suggest that it is a functional BGC responsible for momilactone production. Furthermore, in a survey of genomic sequences of a broad range of plant species, we found that momilactone BGC is limited to the two grasses (Oryza and Echinochloa) and C. plumiforme, with no synteny among these genomes. These results indicate that while the gene cluster in C. plumiforme is functionally similar to that in rice and barnyard grass, it is likely a product of convergent evolution. To the best of our knowledge, this report of a BGC for a specialized plant defense metabolite in bryophytes is unique.


Asunto(s)
Evolución Molecular , Genoma de Planta , Lactonas/metabolismo , Plantas/metabolismo , Vías Biosintéticas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/genética
11.
Biosci Biotechnol Biochem ; 84(4): 797-799, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31790630

RESUMEN

Insect gall structures have many characteristic forms and colors, which are distinguishable from host plants. In this study, we identified an anthocyanin from red color insect galls and revealed that the anthocyanin biosynthesis of plants was induced by the gall extracts. The galling insects presumably regulate the anthocyanin biosynthesis of host plants to protect their larvae from environmental stresses.


Asunto(s)
Antocianinas/química , Ceratopogonidae/fisiología , Fagus/parasitología , Galactósidos/química , Interacciones Huésped-Parásitos , Animales , Antocianinas/biosíntesis , Ceratopogonidae/crecimiento & desarrollo , Fagus/metabolismo , Larva/fisiología
12.
Methods Mol Biol ; 1924: 35-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30694465

RESUMEN

The non-seed land plant Physcomitrella patens is a model species for developmental, cellular, and molecular biology studies in mosses and also for performing genetic analyses. Previously, it was shown that wild-type P. patens displays a unique photomorphogenetic behavior, in which chloronemal filaments grow in the opposite direction to a blue-light source. Here, we describe bioassay systems that can be used to study light avoidance responses as well as other aspects of photomorphogenetic regulation in P. patens grown under red- and blue-light sources.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Luz , Bioensayo , Bryopsida/metabolismo , Bryopsida/efectos de la radiación , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Biosci Biotechnol Biochem ; 82(10): 1770-1779, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29912637

RESUMEN

We previously found a chemical, designated as NJ15, which inhibited both auxin and brassinosteroid responses in dark-grown Arabidopsis. To study its mode of action, we performed a phenotypic screening of NJ15-low-sensitive lines among mutant pools of Arabidopsis. One line (f127) showed clear NJ15-low-sensitivity in terms of hypocotyl elongation and shoot gravitropism. After further testing, it was determined that DCR, an enzyme involved in cutin polymerization, had lost its function in the mutant, which caused its low sensitivity to NJ15. Fatty acids are the base materials for polymers such as cutin and cuticular wax. We confirmed that NJ15 affects fatty acid biosynthesis, and that it does differently from cafenstrole, a known inhibitor of cuticular wax formation. Based on these results, we propose that the target of NJ15 is likely located within the cutin polymer formation pathway. ABBREVIATIONS: Caf: cafenstrole; DEG: differentially expressed gene; FDR: false discovery rate; FOX: full length cDNA-overexpressor; VLCFA: very-long-chain fatty acid.


Asunto(s)
Arabidopsis/efectos de los fármacos , Gravitropismo/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Brotes de la Planta/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Hipocótilo/crecimiento & desarrollo , Mutación , Brotes de la Planta/crecimiento & desarrollo , Polimerizacion , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Sulfonas/farmacología , Transcriptoma , Triazoles/farmacología
15.
Bioorg Med Chem Lett ; 28(14): 2465-2470, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907394

RESUMEN

Helminthosporol, a natural growth regulator isolated from a fungus, stimulates hypocotyl growth and seed germination, similar to gibberellin (GA). We recently reported that helminthosporic acid (H-acid), a synthetic analog of helminthosporol, acts as an agonist of GA receptor. In this study, we showed that a H-acid analog, in which the hydroxymethyl group at the C-8 position of H-acid was converted to a keto group, acts as a selective GA receptor agonist. 1) This analog shows higher hypocotyl elongation activity in Arabidopsis than H-acid does, and induces the degradation of DELLA protein and 2) leads to the formation of the GID1-DELLA complex and 3) regulates the expression of GA-related genes. In addition, 4) its hypocotyl elongation activity was not observed in a atgid1a single mutant, and 5) this analog could promote only the interaction between specific GA receptors and DELLA proteins in vitro. Taken together, our results strongly suggest that the selectivity of the reported H-acid analog depends on the specificity of its GA receptor binding activity.


Asunto(s)
Proteínas de Arabidopsis/agonistas , Hidrocarburos Aromáticos con Puentes/farmacología , Receptores de Superficie Celular/agonistas , Hidrocarburos Aromáticos con Puentes/síntesis química , Hidrocarburos Aromáticos con Puentes/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad
17.
Biosci Biotechnol Biochem ; 82(6): 1021-1030, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29157132

RESUMEN

In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.


Asunto(s)
Cromosomas de las Plantas , Sistema Enzimático del Citocromo P-450/genética , Oryza/genética , Sesquiterpenos/metabolismo , Hidroxilación , Mutación , ARN Mensajero/genética , Fitoalexinas
18.
J Biochem ; 163(1): 69-76, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036583

RESUMEN

CYP701B1 of the moss, Physcomitrella patents, might be a unique cytochrome P450 having the ent-kaurene oxidase (KO) activity occurring in nonvascular plant. Phylogenetic analysis suggested that the gene encoding CYP701B1 was diverged from a common ancestral gene encoding KO of vascular plants. CYP701B1 expressed in Phichia yeast microsomes was purified and characterized. The purified CYP701B1 catalyzed the oxidation of ent-kaurene to ent-kaurenoic acid through three successive monooxygenations, and the rate-limiting step of this oxidation might be the initial step that forms ent-kaurenol. CYP701B1 was a typical ferric low-spin cytochrome P450 and was completely moved to high-spin state upon binding with ent-kaurene, and apparent Kd of ent-kaurene estimated by the spectral change caused by this spin-state shift was 2.5 µM. The potent KO inhibitor uniconazole, an azole compound with molecular size similar to ent-kaurene, bound CYP701B1 with high affinity. However, ketoconazole, an azole compound whose molecular size is larger than ent-kaurene could not bind to CYP701B, though it binds strongly with CYP51, lanosterol 14-demethylase. The results indicated that the active site of CYP701B1 is fitted for the molecular size of ent-kaurene. The P450 monooxygenase adapted for ent-kaurene oxidation might appear in land plants before evolutionary divergence into vascular and nonvascular plants.


Asunto(s)
Bryopsida/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Biocatálisis , Sistema Enzimático del Citocromo P-450/genética , Diterpenos/química , Diterpenos/metabolismo , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/metabolismo , Oxidación-Reducción , Filogenia , Triazoles/farmacología
19.
Biosci Biotechnol Biochem ; 81(11): 2152-2159, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29017401

RESUMEN

Helminthosporol was isolated from a fungus, Helminthosporium sativum, as a natural plant growth regulator in 1963. It showed gibberellin-like bioactivity that stimulated the growth of the second leaf sheath of rice. After studying the structure-activity relationship between the compound and some synthesized analogs, it was found that helminthosporic acid (H-acid) has higher gibberellin-like activity and chemical stability than helminthosporol. In this study, we showed that (1) H-acid displays gibberellin-like activities not only in rice but also in Arabidopsis, (2) it regulates the expression of gibberellin-related genes, (3) it induces DELLA degradation through binding with a gibberellin receptor (GID1), and (4) it forms the GID1-(H-acid)-DELLA complex to transduce the gibberellin signal in the same manner as gibberellin. This work shows that the H-acid mode of action acts as an agonist for gibberellin receptor.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/farmacología , Giberelinas/metabolismo , Receptores de Superficie Celular/agonistas , Arabidopsis/metabolismo , Hidrocarburos Aromáticos con Puentes/metabolismo , Simulación del Acoplamiento Molecular , Oryza/metabolismo , Proteínas de Plantas/agonistas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
20.
Sci Rep ; 6: 25316, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27137939

RESUMEN

Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Briófitas/enzimología , Briófitas/metabolismo , Diterpenos/metabolismo , Transferasas Alquil y Aril/genética , Briófitas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA