Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 175(5): e14051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882259

RESUMEN

Roots detect water potential gradients in the soil and orient toward moister areas, a response known as hydrotropism that aids drought avoidance. Although auxin is crucial in tropism, its polar transport is not essential for hydrotropism in Arabidopsis. Moreover, antiauxin treatments in Arabidopsis produced inconsistent outcomes: some studies indicated auxin action was necessary while others did not. In this study, we examined auxin's physiological role in hydrotropism. We found that inhibiting auxin biosynthesis or transport intensified hydrotropic bending not only in wild-type, but also in hydrotropism defective mutants, namely miz1-1 and miz2 plants. Given that miz1-1 and miz2 exhibited compromised hydrotropism even under clinorotated conditions, we infer that auxin biosynthesis and transport directly suppress hydrotropism. Additionally, tir1-10, afb1-3, and afb2-3 displayed augmented hydrotropism. We observed a significant delay in hydrotropic bending in arf7-1arf19-1, suggesting that ARF7 and ARF19 amplify hydrotropism in its early stages. To discern the functional ties of ARF7/19 with MIZ1 and MIZ2, we studied the hydrotropic phenotypes of arf7-1arf19-1miz1-1 and arf7-1arf19-1miz2. Both triple mutants had diminished early-stage hydrotropism yet showed partial but significant recovery in the later stages. Given MIZ1's role in reducing auxin levels and MIZ2's essentiality for MIZ1 functionality, we conclude that auxin inhibits hydrotropism downstream of MIZ1 in later stages to refine root bending. Furthermore, it is posited that gene expression driven by ARF7 and ARF19 is pivotal for early-stage root hydrotropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Tropismo/genética , Agua/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
2.
J Exp Bot ; 74(17): 5026-5038, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220914

RESUMEN

In response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e. in the presence of a moisture gradient, root bending towards greater water availability). Intriguingly, mutations in these genes also cause a substantial reduction in phototropism. Here, we examined whether the same tissue-specific sites of expression required for MIZ1- and GNOM/MIZ2-regulated hydrotropism in Arabidopsis roots are also required for phototropism. The attenuated phototropic response of miz1 roots was completely restored when a functional MIZ1-green fluorescent protein (GFP) fusion was expressed in the cortex of the root elongation zone but not in other tissues such as root cap, meristem, epidermis, or endodermis. The hydrotropic defect and reduced phototropism of miz2 roots were restored by GNOM/MIZ2 expression in either the epidermis, cortex, or stele, but not in the root cap or endodermis. Thus, the sites in root tissues that are involved in the regulation of MIZ1- and GNOM/MIZ2-dependent hydrotropism also regulate phototropism. These results suggest that MIZ1- and GNOM/MIZ2-mediated pathways are, at least in part, shared by hydrotropic and phototropic responses in Arabidopsis roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fototropismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Tropismo/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo
3.
J Plant Res ; 133(3): 445, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32212042

RESUMEN

The article Molecular mechanisms mediating root hydrotropism.

4.
J Plant Res ; 133(1): 3-14, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31797131

RESUMEN

Roots display directional growth toward moisture in response to a water potential gradient. Root hydrotropism is thought to facilitate plant adaptation to continuously changing water availability. Hydrotropism has not been as extensively studied as gravitropism. However, comparisons of hydrotropic and gravitropic responses identified mechanisms that are unique to hydrotropism. Regulatory mechanisms underlying the hydrotropic response appear to differ among different species. We recently performed molecular and genetic analyses of root hydrotropism in Arabidopsis thaliana. In this review, we summarize the current knowledge of specific mechanisms mediating root hydrotropism in several plant species.


Asunto(s)
Arabidopsis , Tropismo , Proteínas de Arabidopsis , Gravitropismo , Raíces de Plantas , Agua
5.
Physiol Plant ; 165(3): 464-475, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30159898

RESUMEN

Plants exhibit helical growth movements known as circumnutation in growing organs. Some studies indicate that circumnutation involves the gravitropic response, but this notion is a matter of debate. Here, using the agravitropic rice mutant lazy1 and space-grown rice seedlings, we found that circumnutation was reduced or lost during agravitropic growth in coleoptiles. Coleoptiles of wild-type rice exhibited circumnutation in the dark, with vigorous oscillatory movements during their growth. The gravitropic responses in lazy1 coleoptiles differed depending on the growth stage, with gravitropic responses detected during early growth and agravitropism during later growth. The nutation-like movements observed in lazy1 coleoptiles at the early stage of growth were no longer detected with the disappearance of the gravitropic response. To verify the relationship between circumnutation and gravitropic responses in rice coleoptiles, we conducted spaceflight experiments in plants under microgravity conditions on the International Space Station. Wild-type rice seeds were germinated, and the resulting seedlings were grown under microgravity or a centrifuge-generated 1 g environment in space. We began filming the seedlings 2 days after seed imbibition and obtained images of seedling growth every 15 min. The seed germination rate in space was 92-100% under both microgravity and 1 g conditions. LED-synchronized flashlight photography induced an attenuation of coleoptile growth and circumnutational movement due to cumulative light exposure. Nevertheless, wild-type rice coleoptiles still showed circumnutational oscillations under 1 g but not microgravity conditions. These results support the idea that the gravitropic response is involved in plant circumnutation.


Asunto(s)
Cotiledón/fisiología , Oryza/fisiología , Plantones/fisiología , Cotiledón/genética , Gravitropismo/genética , Gravitropismo/fisiología , Mutación/genética , Oryza/genética , Plantones/genética
6.
PLoS One ; 13(1): e0189827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324818

RESUMEN

In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots.


Asunto(s)
Cucumis sativus/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Cucumis sativus/crecimiento & desarrollo , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Agua
7.
New Phytol ; 215(4): 1476-1489, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722158

RESUMEN

Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (µG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under µG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and µG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in µG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.


Asunto(s)
Cucumis sativus/fisiología , Gravitación , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Vuelo Espacial , Agua/fisiología , Transporte Biológico , Humedad , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Factores de Tiempo
8.
J Exp Bot ; 68(13): 3441-3456, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28633373

RESUMEN

The direction of auxin transport changes in gravistimulated roots, causing auxin accumulation in the lower side of horizontally reoriented roots. This study found that auxin was similarly involved in hydrotropism and gravitropism in rice and pea roots, but hydrotropism in Lotus japonicus roots was independent of both auxin transport and response. Application of either auxin transport inhibitors or an auxin response inhibitor decreased both hydrotropism and gravitropism in rice roots, and reduced hydrotropism in pea roots. However, Lotus roots treated with these inhibitors showed reduced gravitropism but an unaltered or an enhanced hydrotropic response. Inhibiting auxin biosynthesis substantially reduced both tropisms in rice and Lotus roots. Removing the final 0.2 mm (including the root cap) from the root tip inhibited gravitropism but not hydrotropism in rice seedling roots. These results suggested that modes of auxin involvement in hydrotropism differed between plant species. In rice roots, although auxin transport and responses were required for both gravitropism and hydrotropism, the root cap was involved in the auxin regulation of gravitropism but not hydrotropism. Hydrotropism in Lotus roots, however, may be regulated by a novel mechanism that is independent of both auxin transport and the TIR1/AFBs auxin response pathway.


Asunto(s)
Gravitropismo , Ácidos Indolacéticos/metabolismo , Lotus/fisiología , Oryza/fisiología , Pisum sativum/fisiología , Transporte Biológico , Raíces de Plantas/fisiología , Plantones/fisiología , Especificidad de la Especie
9.
Nat Plants ; 3: 17057, 2017 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-28481327

RESUMEN

Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Tropismo , Ácido Abscísico/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/citología , Transducción de Señal
10.
NPJ Microgravity ; 2: 16030, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725738

RESUMEN

Reorientation of cucumber seedlings induces re-localization of CsPIN1 auxin efflux carriers in endodermal cells of the transition zone between hypocotyl and roots. This study examined whether the re-localization of CsPIN1 was due to the graviresponse. Immunohistochemical analysis indicated that, when cucumber seedlings were grown entirely under microgravity conditions in space, CsPIN1 in endodermal cells was mainly localized to the cell side parallel to the minor axis of the elliptic cross-section of the transition zone. However, when cucumber seeds were germinated in microgravity for 24 h and then exposed to 1g centrifugation in a direction crosswise to the seedling axis for 2 h in space, CsPIN1 was re-localized to the bottom of endodermal cells of the transition zone. These results reveal that the localization of CsPIN1 in endodermal cells changes in response to gravity. Furthermore, our results suggest that the endodermal cell layer becomes a canal by which auxin is laterally transported from the upper to the lower flank in response to gravity. The graviresponse-regulated re-localization of CsPIN1 could be responsible for the decrease in auxin level, and thus for the suppression of peg formation, on the upper side of the transition zone in horizontally placed seedlings of cucumber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA