Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927112

RESUMEN

De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.


Asunto(s)
Aptámeros de Nucleótidos , Diferenciación Celular , Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Nucleolina , Fosfoproteínas , Proteínas de Unión al ARN , Animales , Proteínas de Unión al ARN/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Aptámeros de Nucleótidos/farmacología , Proliferación Celular/efectos de los fármacos , Fosfoproteínas/metabolismo , Diferenciación Celular/efectos de los fármacos , Humanos , Ratas , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Ratones , Células Cultivadas , Oligodesoxirribonucleótidos/farmacología , Masculino , Ratas Sprague-Dawley , Ratones Endogámicos C57BL
2.
Biochem Biophys Res Commun ; 664: 1-8, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127012

RESUMEN

A myogenetic oligodeoxynucleotide, iSN04, is the 18-base single-stranded DNA that acts as an anti-nucleolin aptamer. iSN04 has been reported to restore myogenic differentiation by suppressing inflammatory responses in myoblasts isolated from patients with diabetes or healthy myoblasts exposed to cancer-releasing factors. Thus, iSN04 is expected to be a nucleic acid drug for the muscle wasting associated with chronic diseases. The present study investigated the anti-inflammatory mechanism of iSN04 in the murine myoblast cell line C2C12. Tumor necrosis factor-α (TNF-α) or Toll-like receptor (TLR) ligands (Pam3CSK4 and FSL-1) induced nuclear translocation and transcriptional activity of nuclear factor-κB (NF-κB), resulting in upregulated expression of TNF-α and interleukin-6. Pre-treatment with iSN04 significantly suppressed these inflammatory responses by inhibiting the nuclear accumulation of ß-catenin induced by TNF-α or TLR ligands. These results demonstrate that antagonizing nucleolin with iSN04 downregulates the inflammatory effect mediated by the ß-catenin/NF-κB signaling pathway in C2C12 cells. In addition, the anti-inflammatory effects of iSN04 were also observed in the rat smooth muscle cell line A10 and the murine adipocyte-like fibroblast cell line 3T3-L1, suggesting that iSN04 may be useful in preventing inflammation induced by metabolic disorders.


Asunto(s)
FN-kappa B , beta Catenina , Ratas , Animales , Ratones , Factor de Necrosis Tumoral alfa , Transducción de Señal , Oligonucleótidos
3.
Sci Rep ; 13(1): 688, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639720

RESUMEN

Thermography using energy-dependent neutron transmission imaging can non-invasively and non-destructively visualize a real-space distribution of interior temperatures of a material in a container. Previously, resonance absorption broadening analysis and Bragg-edge shift analysis using energy-resolved neutron transmission have been developed, however some issues remain, e.g., imaging efficiency, substance limitation and temperature sensitivity. For this reason, we propose a new neutron thermography using the temperature dependence of inelastic scattering of cold neutrons. This method has some advantages, for example, the imaging efficiency is high because cold neutrons are measured with moderate wavelength resolution, and light elements can be analysed in principle. We investigated the feasibility of this new neutron thermography at pulsed neutron time-of-flight imaging instruments at ISIS in the United Kingdom and HUNS in Japan. A Rietveld-type transmission spectrum analysis program (RITS) was employed to refine temperature and atomic displacement parameters from the inelastic scattering cross-section analysis. Finally, we demonstrated interior thermography of an α-Fe sample of 10 mm thickness inside a vacuum chamber by using a neutron time-of-flight imaging detector at the compact accelerator-driven pulsed neutron source HUNS.

4.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630904

RESUMEN

Dysfunction of bone-forming cells, osteoblasts, is one of the causes of osteoporosis. Accumulating evidence has indicated that oligodeoxynucleotides (ODNs) designed from genome sequences have the potential to regulate osteogenic cell fate. Such osteogenetic ODNs (osteoDNs) targeting and activating osteoblasts can be the candidates of nucleic acid drugs for osteoporosis. In this study, the ODN library derived from the Lacticaseibacillus rhamnosus GG genome was screened to determine its osteogenetic effect on murine osteoblast cell line MC3T3-E1. An 18-base ODN, iSN40, was identified to enhance alkaline phosphatase activity of osteoblasts within 48 h. iSN40 also induced the expression of osteogenic genes such as Msx2, osterix, collagen type 1α, osteopontin, and osteocalcin. Eventually, iSN40 facilitated calcium deposition on osteoblasts at the late stage of differentiation. Intriguingly, the CpG motif within iSN40 was not required for its osteogenetic activity, indicating that iSN40 functions in a TLR9-independent manner. These data demonstrate that iSN40 serves as a novel osteogenetic ODN (osteoDN) that promotes osteoblast differentiation. iSN40 provides a potential seed of the nucleic acid drug that activating osteoblasts for osteoporosis therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA