Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Nat Commun ; 9(1): 3881, 2018 09 24.
Article En | MEDLINE | ID: mdl-30250170

Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) strategies with proven in vivo efficacy rely on antiretroviral drugs, creating the potential for drug resistance and complicated treatment options in individuals who become infected. Moreover, on-demand products are currently missing from the PrEP development portfolio. Griffithsin (GRFT) is a non-antiretroviral HIV entry inhibitor derived from red algae with an excellent safety profile and potent activity in vitro. When combined with carrageenan (CG), GRFT has strong activity against herpes simplex virus-2 (HSV-2) and human papillomavirus (HPV) in vitro and in vivo. Here, we report that GRFT/CG in a freeze-dried fast dissolving insert (FDI) formulation for on-demand use protects rhesus macaques from a high dose vaginal SHIV SF162P3 challenge 4 h after FDI insertion. Furthermore, the GRFT/CG FDI also protects mice vaginally against HSV-2 and HPV pseudovirus. As a safe, potent, broad-spectrum, on-demand non-antiretroviral product, the GRFT/CG FDI warrants clinical development.


Acquired Immunodeficiency Syndrome/prevention & control , Antiviral Agents/therapeutic use , Carrageenan/therapeutic use , Herpes Genitalis/prevention & control , Papillomavirus Infections/prevention & control , Plant Lectins/therapeutic use , Administration, Intravaginal , Animals , Antiviral Agents/chemistry , Carrageenan/chemistry , Disease Models, Animal , Drug Compounding/methods , Drug Evaluation, Preclinical , Female , Freeze Drying , Herpes Genitalis/virology , Herpesvirus 2, Human/pathogenicity , Humans , Macaca mulatta , Male , Papillomavirus Infections/virology , Plant Lectins/chemistry , Plant Lectins/genetics , Plant Lectins/isolation & purification , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pre-Exposure Prophylaxis/methods , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/pathogenicity , Nicotiana/genetics , Nicotiana/metabolism , Treatment Outcome , Vagina/virology
2.
J Pharm Sci ; 107(10): 2601-2610, 2018 10.
Article En | MEDLINE | ID: mdl-29902477

Precoital, on-demand topical microbicides to reduce a woman's risk of sexually transmitted infections have been in development for nearly 3 decades, but no product has been approved due to acceptability issues and poor adherence in clinical trials. We set out to develop a self-administered vaginal fast-dissolving insert (FDI) produced by freeze-drying that would deliver safe and effective amounts of the antiviral agents griffithsin (GRFT) and carrageenan (CG) and would have properties women and their partners find acceptable. We evaluated FDI physical criteria, attributes of the gel produced upon dissolving, and GRFT stability. The lead formulation, FDI-024, was selected from 13 candidates and contains 4 mg of GRFT, 15 mg of CG, and excipients (the cryoprotectant sucrose and bulking agents dextran 40 and mannitol). The FDI exhibits good friability and hardness and is stable for at least 6 months at up to 40°C/75% relative humidity. It disintegrates in less than 60 s in a physiologically relevant volume (∼1 mL) of simulated vaginal fluid, forming a viscous semi-solid gel with favorable mucoadhesive and spreading properties. The formulation retains the antiviral activity of GRFT and CG against HIV type 1 and human papillomavirus, respectively, in cell-based assays.


Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Carrageenan/chemistry , Sexually Transmitted Diseases/drug therapy , Vagina/drug effects , Administration, Intravaginal , Excipients/chemistry , Female , Freeze Drying/methods , HIV-1/drug effects , Humans , Papillomaviridae/drug effects , Solubility
3.
Front Microbiol ; 8: 2342, 2017.
Article En | MEDLINE | ID: mdl-29259582

Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.

4.
Drug Deliv Transl Res ; 7(6): 859-866, 2017 12.
Article En | MEDLINE | ID: mdl-28812250

We previously showed that the combination of the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 with zinc acetate (ZA) formulated in a carrageenan (CG; MZC) gel provided macaques significant protection against vaginal simian-human immunodeficiency virus-RT (SHIV-RT) challenge, better than either MIV-150/CG or ZA/CG. The MZC gel was shown to be safe in a phase 1 clinical trial. Herein, we used in vitro approaches to study the antiviral properties of ZA and the MIV-150/ZA combination, compared to other NNRTIs. Like other NNRTIs, MIV-150 has EC50 values in the subnanomolar to nanomolar range against wild type and NNRTI or RT-resistant HIVs. While less potent than NNRTIs, ZA was shown to be active in primary cells against laboratory-adapted and primary HIV-1 isolates and HIV-1 isolates/clones with NNRTI and RT resistance mutations, with EC50 values between 20 and 110 µM. The MIV-150/ZA combination had a potent and broad antiviral activity in primary cells. In vitro resistance selection studies revealed that previously described NNRTI-resistant mutations were selected by MIV-150. ZA-resistant virus retained susceptibility to MIV-150 (and other RTIs) and MIV-150-selected virus remained sensitive to ZA. Notably, resistant virus was not selected when cultured in the presence of both ZA and MIV-150. This underscores the potency and breadth of the MIV-150/ZA combination, supporting preclinical macaque studies and the advancement of MZC microbicides into clinical testing.


Anti-Retroviral Agents/administration & dosage , HIV-1/drug effects , Pyridines/administration & dosage , Urea/analogs & derivatives , Zinc Acetate/administration & dosage , Anti-Retroviral Agents/pharmacology , Drug Resistance, Viral/drug effects , Drug Therapy, Combination , HIV-1/genetics , Humans , Microbial Sensitivity Tests , Pyridines/pharmacology , Urea/administration & dosage , Urea/pharmacology , Zinc Acetate/pharmacology
5.
Drug Deliv Transl Res ; 7(6): 840-858, 2017 Dec.
Article En | MEDLINE | ID: mdl-28600625

Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.


Antiviral Agents/administration & dosage , Contraceptive Agents, Female/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaginal Creams, Foams, and Jellies/administration & dosage , Virus Shedding/drug effects , Alphapapillomavirus/drug effects , Alphapapillomavirus/physiology , Animals , Antiviral Agents/pharmacology , Carrageenan/administration & dosage , Carrageenan/pharmacology , Contraceptive Agents, Female/pharmacology , Contraceptive Devices, Female , Disease Models, Animal , Drug Therapy, Combination/methods , Female , Herpes Simplex/prevention & control , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/physiology , Humans , Macaca mulatta , Menstrual Cycle , Pyridines/administration & dosage , Pyridines/pharmacology , Urea/administration & dosage , Urea/analogs & derivatives , Urea/pharmacology , Vaginal Creams, Foams, and Jellies/pharmacology , Zinc Acetate/administration & dosage , Zinc Acetate/pharmacology
6.
PLoS One ; 11(7): e0159332, 2016.
Article En | MEDLINE | ID: mdl-27428377

Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.


Anti-Infective Agents/pharmacology , Contraceptive Agents, Female/pharmacology , Levonorgestrel/pharmacology , Pyridines/pharmacology , Reassortant Viruses/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Urea/analogs & derivatives , Vagina/drug effects , Animals , Carrageenan/pharmacology , Contraceptive Devices, Female , Drug Combinations , Female , HIV/drug effects , HIV/genetics , HIV/growth & development , Macaca mulatta , Mucous Membrane/drug effects , Mucous Membrane/virology , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/growth & development , Treatment Outcome , Urea/pharmacology , Vagina/virology , Zinc Acetate/pharmacology
7.
Antimicrob Agents Chemother ; 60(9): 5459-66, 2016 09.
Article En | MEDLINE | ID: mdl-27381393

Our recent phase 1 trial demonstrated that PC-1005 gel containing 50 µM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants after in vitro exposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaL infection and HIV-1BaL-HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaL infection. In vitro exposure to PC-1005 protected cervical mucosa against HIV-1BaL (up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaL at the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P < 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gel in vitro and CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.


Anti-Infective Agents/pharmacology , Body Fluids/virology , HIV Infections/drug therapy , Herpes Genitalis/drug therapy , Mucous Membrane/virology , Vagina/drug effects , Administration, Intravaginal , Body Fluids/drug effects , Coinfection/drug therapy , Coinfection/virology , Female , Gels/pharmacology , HIV Infections/virology , HIV Reverse Transcriptase/pharmacology , HIV-1/drug effects , Herpes Genitalis/virology , Herpesvirus 2, Human/drug effects , Humans , Mucous Membrane/drug effects , Pyridines/pharmacology , Urea/analogs & derivatives , Urea/pharmacology , Vagina/virology , Zinc Acetate/pharmacology
8.
Antimicrob Agents Chemother ; 59(12): 7290-8, 2015 Dec.
Article En | MEDLINE | ID: mdl-26369967

Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 µM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide.


Antiviral Agents/pharmacology , Carrageenan/pharmacology , Herpes Genitalis/drug therapy , Herpesvirus 2, Human/drug effects , Papillomavirus Infections/drug therapy , Plant Lectins/pharmacology , Animals , Chlorocebus aethiops , Disease Models, Animal , Drug Combinations , Drug Synergism , Female , HIV-1/drug effects , HIV-1/physiology , HeLa Cells , Herpes Genitalis/virology , Herpesvirus 2, Human/physiology , Human papillomavirus 16/drug effects , Human papillomavirus 16/physiology , Human papillomavirus 18/drug effects , Human papillomavirus 18/physiology , Humans , Mice , Mice, Inbred BALB C , Papillomavirus Infections/virology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
9.
J Control Release ; 213: 57-68, 2015 Sep 10.
Article En | MEDLINE | ID: mdl-26091920

Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevents unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV-1), zinc acetate (ZA; targets HIV-1 and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and the macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28 d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy.


Antiviral Agents/administration & dosage , Contraceptive Devices, Female/virology , Drug Delivery Systems/instrumentation , HIV Infections/prevention & control , Herpes Genitalis/prevention & control , Levonorgestrel/administration & dosage , Papillomavirus Infections/prevention & control , Administration, Intravaginal , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Carrageenan/administration & dosage , Carrageenan/pharmacokinetics , Carrageenan/pharmacology , Cell Line , Contraceptive Agents, Female/administration & dosage , Contraceptive Agents, Female/pharmacokinetics , Contraceptive Agents, Female/pharmacology , Equipment Design , Female , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HeLa Cells , Herpesvirus 2, Human/drug effects , Human papillomavirus 16/drug effects , Humans , Levonorgestrel/pharmacokinetics , Levonorgestrel/pharmacology , Macaca mulatta , Pregnancy , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Pyridines/pharmacology , Urea/administration & dosage , Urea/analogs & derivatives , Urea/pharmacokinetics , Urea/pharmacology , Zinc Acetate/administration & dosage , Zinc Acetate/pharmacokinetics , Zinc Acetate/pharmacology
10.
J Exp Med ; 211(9): 1875-91, 2014 Aug 25.
Article En | MEDLINE | ID: mdl-25135299

DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin(+) DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.


Dendritic Cells/immunology , Membrane Proteins/immunology , Vaccines/immunology , Animals , Antigen Presentation , Antigens, Surface/genetics , Antigens, Surface/immunology , Dendritic Cells/classification , Female , Gene Expression , Humans , Immunity, Humoral/genetics , Injections, Intradermal , Injections, Subcutaneous , Interferon-gamma/biosynthesis , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Ligands , Male , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Ovalbumin/immunology , Proteins/immunology , T-Lymphocyte Subsets/immunology , Transcription Factors/immunology , Vaccines/administration & dosage
11.
Antiviral Res ; 108: 88-93, 2014 Aug.
Article En | MEDLINE | ID: mdl-24909570

Commercial vaccines against human papillomavirus (HPV) have low uptake due to parental autonomy, dosing regimen, cost, and cold chain storage requirements. Carrageenan (CG)-based formulations prevent HPV infection in vitro and in vivo but data are needed on the durability of anti-HPV activity and the effect of seminal plasma (SP). The Population Council's PC-515 gel and the lubricant Divine 9 were tested for their physicochemical properties and anti-HPV activity against HPV16, 18, and 45 pseudoviruses (PsVs). Anti-PsV activity was estimated using the luciferase assay in HeLa cells and the HPV PsV luciferase mouse model. Formulations were applied intravaginally either 2h pre/2h post (-2h/+2h) or 24h pre (-24h) relative to challenge with HPV16 or 45 PsV in PBS or SP/PBS. Both formulations showed broad-spectrum anti-HPV activity in vitro (IC50: 1-20ng/ml), significantly decreasing HPV PsV infection in the mouse model (-2h/+2h, p<0.0001). PC-515 protected better than Divine 9 in the -24h dosing regimen (p<0.0001) and comparable to Divine 9 in the -2h/+2h regimen (p=0.9841). PC-515 retained full activity in the murine model when PsV solutions contained human SP. The durable, potential broad-spectrum anti-HPV activity of CG formulations in the presence of SP supports their further development to prevent HPV acquisition.


Carrageenan/pharmacology , Carrageenan/therapeutic use , Chemoprevention/methods , Papillomaviridae/drug effects , Papillomavirus Infections/prevention & control , Administration, Intravaginal , Animals , Disease Models, Animal , Genes, Reporter , HeLa Cells , Humans , Inhibitory Concentration 50 , Luciferases/analysis , Luciferases/genetics , Mice , Microbial Sensitivity Tests , Post-Exposure Prophylaxis/methods , Pre-Exposure Prophylaxis/methods , Semen/metabolism , Treatment Outcome
12.
PLoS One ; 9(4): e94547, 2014.
Article En | MEDLINE | ID: mdl-24740100

Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 10(6) pfu HSV-2 were applied immediately after vaginal challenge and also when 5×10(3) pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×10(6) HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use.


Alphapapillomavirus/drug effects , Anti-Infective Agents/pharmacology , Herpesvirus 2, Human/drug effects , Simian Immunodeficiency Virus/drug effects , Alphapapillomavirus/physiology , Anal Canal/drug effects , Anal Canal/virology , Animals , Anti-Infective Agents/chemistry , Caco-2 Cells , Carrageenan/chemistry , Carrageenan/pharmacology , Female , Gels , HeLa Cells , Herpes Simplex/prevention & control , Herpes Simplex/virology , Herpesvirus 2, Human/physiology , Host-Pathogen Interactions/drug effects , Humans , Macaca mulatta , Mice, Inbred BALB C , Papillomavirus Infections/prevention & control , Papillomavirus Infections/virology , Pyridines/chemistry , Pyridines/pharmacology , Rectum/drug effects , Rectum/virology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/enzymology , Simian Immunodeficiency Virus/physiology , Treatment Outcome , Urea/analogs & derivatives , Urea/chemistry , Urea/pharmacology , Vagina/drug effects , Vagina/virology , Zinc Acetate/chemistry , Zinc Acetate/pharmacology
13.
PLoS One ; 9(2): e89300, 2014.
Article En | MEDLINE | ID: mdl-24586674

When microbicides used for HIV prevention contain antiretroviral drugs, there is concern for the potential emergence of drug-resistant HIV following use in infected individuals who are either unaware of their HIV infection status or who are aware but still choose to use the microbicide. Resistant virus could ultimately impact their responsiveness to treatment and/or result in subsequent transmission of drug-resistant virus. We tested whether drug resistance mutations (DRMs) would emerge in macaques infected with simian immunodeficiency virus expressing HIV reverse transcriptase (SHIV-RT) after sustained exposure to the potent non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 delivered via an intravaginal ring (IVR). We first treated 4 SHIV-RT-infected animals with daily intramuscular injections of MIV-150 over two 21 day (d) intervals separated by a 7 d drug hiatus. In all 4 animals, NNRTI DRMs (single and combinations) were detected within 14 d and expanded in proportion and diversity with time. Knowing that we could detect in vivo emergence of NNRTI DRMs in response to MIV-150, we then tested whether a high-dose MIV-150 IVR (loaded with >10 times the amount being used in a combination microbicide IVR in development) would select for resistance in 6 infected animals, modeling use of this prevention method by an HIV-infected woman. We previously demonstrated that this MIV-150 IVR provides significant protection against vaginal SHIV-RT challenge. Wearing the MIV-150 IVR for 56 d led to only 2 single DRMs in 2 of 6 animals (430 RT sequences analyzed total, 0.46%) from plasma and lymph nodes despite MIV-150 persisting in the plasma, vaginal fluids, and genital tissues. Only wild type virus sequences were detected in the genital tissues. These findings indicate a low probability for the emergence of DRMs after topical MIV-150 exposure and support the advancement of MIV-150-containing microbicides.


Drug Resistance, Viral/genetics , Pyridines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics , Urea/analogs & derivatives , Administration, Intravaginal , Animals , Anti-Infective Agents, Local/administration & dosage , Female , Injections, Intramuscular , Macaca mulatta , Mutation , Pyridines/administration & dosage , Reverse Transcriptase Inhibitors/administration & dosage , Simian Acquired Immunodeficiency Syndrome/virology , Time Factors , Urea/administration & dosage , Urea/pharmacology , Viral Load
14.
PLoS One ; 8(6): e67453, 2013.
Article En | MEDLINE | ID: mdl-23840706

Efficient vaccination against the parasite Leishmania major, the causative agent of human cutaneous leishmaniasis, requires development of type 1 T-helper (Th1) CD4(+) T cell immunity. Because of their unique capacity to initiate and modulate immune responses, dendritic cells (DCs) are attractive targets for development of novel vaccines. In this study, for the first time, we investigated the capacity of a DC-targeted vaccine to induce protective responses against L. major. To this end, we genetically engineered the N-terminal portion of the stress-inducible 1 protein of L. major (LmSTI1a) into anti-DEC205/CD205 (DEC) monoclonal antibody (mAb) and thereby delivered the conjugated protein to DEC(+) DCs in situ in the intact animal. Delivery of LmSTI1a to adjuvant-matured DCs increased the frequency of antigen-specific CD4(+) T cells producing IFN-γ(+), IL-2(+), and TNF-α(+) in two different strains of mice (C57BL/6 and Balb/c), while such responses were not observed with the same doses of a control Ig-LmSTI1a mAb without receptor affinity or with non-targeted LmSTI1a protein. Using a peptide library for LmSTI1a, we identified at least two distinct CD4(+) T cell mimetopes in each MHC class II haplotype, consistent with the induction of broad immunity. When we compared T cell immune responses generated after targeting DCs with LmSTI1a or other L. major antigens, including LACK (Leishmania receptor for activated C kinase) and LeIF (Leishmania eukaryotic ribosomal elongation and initiation factor 4a), we found that LmSTI1a was superior for generation of IFN-γ-producing CD4(+) T cells, which correlated with higher protection of susceptible Balb/c mice to a challenge with L. major. For the first time, this study demonstrates the potential of a DC-targeted vaccine as a novel approach for cutaneous leishmaniasis, an increasing public health concern that has no currently available effective treatment.


Antigens, Protozoan/immunology , Dendritic Cells/immunology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Protozoan Proteins/immunology , Th1 Cells/immunology , Animals , Cell Proliferation , Dendritic Cells/parasitology , Female , Immunization , Interferon-gamma/metabolism , Leishmaniasis, Cutaneous/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
15.
Proc Natl Acad Sci U S A ; 107(9): 4281-6, 2010 Mar 02.
Article En | MEDLINE | ID: mdl-20160099

To improve the efficacy of T cell-based vaccination, we pursued the principle that CD4(+) T cells provide help for functional CD8(+) T cell immunity. To do so, we administered HIV gag to mice successively as protein and DNA vaccines. To achieve strong CD4(+) T cell immunity, the protein vaccine was targeted selectively to DEC-205, a receptor for antigen presentation on dendritic cells. This targeting helped CD8(+) T cell immunity develop to a subsequent DNA vaccine and improved protection to intranasal challenge with recombinant vaccinia gag virus, including more rapid accumulation of CD8(+) T cells in the lung. The helper effect of dendritic cell-targeted protein vaccine was mimicked by immunization with specific MHC II binding HIV gag peptides but not peptides from a disparate Yersinia pestis microbe. CD4(+) helper cells upon adoptive transfer allowed wild-type, but not CD40(-/-), recipient mice to respond better to the DNA vaccine. The transfer also enabled recipients to more rapidly accumulate gag-specific CD8(+) T cells in the lung following challenge with vaccinia gag virus. Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves plasmid DNA immunization, including mobilization of CD8(+) T cells to sites of infection.


AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Gene Products, gag/immunology , Vaccines, DNA/immunology , AIDS Vaccines/administration & dosage , Administration, Intranasal , Amino Acid Sequence , Animals , Gene Products, gag/chemistry , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Vaccines, DNA/administration & dosage
16.
PLoS One ; 3(6): e2404, 2008 Jun 11.
Article En | MEDLINE | ID: mdl-18545704

Rapid proliferation is one of the important features of memory CD8(+) T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than naïve T cells upon antigen stimulation. To examine antigen-specific CD8(+) T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205(+) dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+) T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+) T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+) T cell proliferation during a recall response to antigen presented by DCs.


CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-18/metabolism , Animals , Antigens, CD/metabolism , CD40 Antigens/immunology , CD40 Antigens/metabolism , Cytokines/biosynthesis , Humans , Lectins, C-Type/metabolism , Mice , Mice, Transgenic , Minor Histocompatibility Antigens , Receptors, Cell Surface/metabolism
17.
J Clin Invest ; 118(4): 1427-36, 2008 Apr.
Article En | MEDLINE | ID: mdl-18324335

DNA vaccines promote an immune response by providing antigen-encoding DNA to the recipient, but the efficacy of such vaccines needs improving. Many approaches have considerable potential but currently induce relatively weak immune responses despite multiple high doses of DNA vaccine. Here, we asked whether targeting vaccine antigens to DCs would increase the immunity and protection that result from DNA vaccines. To determine this, we generated a DNA vaccine encoding a fusion protein comprised of the vaccine antigen and a single-chain Fv antibody (scFv) specific for the DC-restricted antigen-uptake receptor DEC205. Following vaccination of mice, the vaccine antigen was expressed selectively by DCs, which were required for the increased efficacy of MHC class I and MHC class II antigen presentation relative to a control scFv DNA vaccine. In addition, a DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein induced 10-fold higher antibody levels and increased numbers of IFN-gamma-producing CD4+ and CD8+ T cells. After a single i.m. injection of the DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein, mice were protected from an airway challenge with a recombinant vaccinia virus expressing the HIV gag p41, even with 1% of the dose of nontargeted DNA vaccine. The efficacy of DNA vaccines therefore may be enhanced by inclusion of sequences such as single-chain antibodies to target the antigen to DCs.


Antigens/immunology , Antigens/metabolism , Dendritic Cells/immunology , Vaccines, DNA/immunology , Animals , Antibodies/immunology , Antigens/genetics , Cell Line , Cricetinae , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/metabolism , Humans , Mice , Mucous Membrane/immunology , T-Lymphocytes/immunology
18.
Proc Natl Acad Sci U S A ; 105(7): 2574-9, 2008 Feb 19.
Article En | MEDLINE | ID: mdl-18256187

CD4(+) Th1 type immunity is implicated in resistance to global infectious diseases. To improve the efficacy of T cell immunity induced by human immunodeficiency virus (HIV) vaccines, we are developing a protein-based approach that directly harnesses the function of dendritic cells (DCs) in intact lymphoid tissues. Vaccine proteins are selectively delivered to DCs by antibodies to DEC-205/CD205, a receptor for antigen presentation. We find that polyriboinosinic:polyribocytidylic acid (poly IC) independently serves as an adjuvant to allow a DC-targeted protein to induce protective CD4(+) T cell responses at a mucosal surface, the airway. After two doses of DEC-targeted, HIV gag p24 along with poly IC, responder CD4(+) T cells have qualitative features that have been correlated with protective function. The T cells simultaneously make IFN-gamma, tumor necrosis factor (TNF)-alpha, and IL-2, and in high amounts for prolonged periods. The T cells also proliferate and continue to secrete IFN-gamma in response to HIV gag p24. The adjuvant role of poly IC requires Toll-like receptor (TLR) 3 and melanoma differentiation-associated gene-5 (MDA5) receptors, but its analog poly IC(12)U requires only TLR3. We suggest that poly IC be tested as an adjuvant with DC-targeted vaccines to induce numerous multifunctional CD4(+) Th1 cells with proliferative capacity.


Biomimetic Materials , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Poly I-C/immunology , Vaccines/immunology , Adjuvants, Immunologic , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cytokines/metabolism , Gene Products, gag/immunology , Humans , Mucous Membrane/immunology , Toll-Like Receptor 3/immunology
19.
J Exp Med ; 204(5): 1095-106, 2007 May 14.
Article En | MEDLINE | ID: mdl-17438065

Interferon (IFN)-gamma, a cytokine critical for resistance to infection and tumors, is produced by CD4(+) helper T lymphocytes after stimulation by cultured dendritic cells (DCs) that secrete a cofactor, interleukin (IL)-12. We have identified a major IL-12-independent pathway whereby DCs induce IFN-gamma-secreting T helper (Th)1 CD4(+) T cells in vivo. This pathway requires the membrane-associated tumor necrosis family member CD70 and was identified by targeting the LACK antigen from Leishmania major within an antibody to CD205 (DEC-205), an uptake receptor on a subset of DCs. Another major DC subset, targeted with 33D1 anti-DCIR2 antibody, also induced IFN-gamma in vivo but required IL-12, not CD70. Isolated CD205(+) DCs expressed cell surface CD70 when presenting antigen to T cell receptor transgenic T cells, and this distinction was independent of maturation stimuli. CD70 was also essential for CD205(+) DC function in vivo. Detection of the IL-12-independent IFN-gamma pathway was obscured with nontargeted LACK, which was presented by both DC subsets. This in situ analysis points to CD70 as a decision maker for Th1 differentiation by CD205(+) DCs, even in Th2-prone BALB/c animals and potentially in vaccine design. The results indicate that two DC subsets have innate propensities to differentially affect the Th1/Th2 balance in vivo and by distinct mechanisms.


CD27 Ligand/metabolism , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Interferon-gamma/metabolism , Lymphocyte Subsets/immunology , Signal Transduction/immunology , Animals , Antigen Presentation/immunology , Antigens, CD/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Enzyme-Linked Immunosorbent Assay , Interleukin-12/metabolism , Lectins, C-Type/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Minor Histocompatibility Antigens , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology
20.
Cell Cycle ; 3(6): 796-803, 2004 Jun.
Article En | MEDLINE | ID: mdl-15136770

Increased activity of the src family of oncogenic tyrosine kinases is seen in many human tumors and pharmacologic inhibitors of these kinases are investigated as potential anti-tumor agents. A family of pyrido [2, 3-d] pyrimidine compounds (PD) has been characterized as selective inhibitors of Src kinases. We studied the effects of this class of compounds on cancer cell lines and found that they were highly specific inhibitors of cell cycle progression. These compounds inhibit cells either in the mitotic phase or in mid S-phase; these two activities are mutually exclusive: no compound exerts both activities. We undertook experiments to determine the mechanistic basis for these differences and found additional biochemical activities associated with the S-phase inhibitors. Treatment of cells with the S-phase blocker PD179483 causes abnormal and persistent hyperactivation of Cdk2 and Cdc2 due to Tyr-15 dephosphorylation. These effects were associated with hyperphosphorylation of the upstream regulatory kinase Myt1 and Wee1. They were not observed with the anti-mitotic compounds. Furthermore, the S-phase inhibitors PD179483 and PD166326, but not the anti-mitotic compounds, inhibit Wee1 in vitro at concentrations that cause S-phase block in vivo. These data identify a novel subset of pyridopyrimidine compounds which are inhibitors of src and Wee1 kinases and which inhibit tumor cell growth through cell cycle arrest in mid S-phase.


Cell Cycle/drug effects , Cell Cycle/physiology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridines/pharmacology , Pyrimidines/antagonists & inhibitors , Pyrimidines/pharmacology , S Phase/physiology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , CDC2 Protein Kinase/agonists , CDC2 Protein Kinase/physiology , CDC2-CDC28 Kinases/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/physiology , Cell Line, Tumor , Cyclin-Dependent Kinase 2 , Enzyme Inhibitors/pharmacology , Female , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/physiology , Phosphorylation/drug effects , Protein-Tyrosine Kinases/physiology , Pyridones/metabolism , Pyrimidines/metabolism
...