Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Front Microbiol ; 15: 1411609, 2024.
Article En | MEDLINE | ID: mdl-38881660

Cloning and transfer of long-stranded DNA in the size of a bacterial whole genome has become possible by recent advancements in synthetic biology. For the whole genome cloning and whole genome transplantation, bacteria with small genomes have been mainly used, such as mycoplasmas and related species. The key benefits of whole genome cloning include the effective maintenance and preservation of an organism's complete genome within a yeast host, the capability to modify these genome sequences through yeast-based genetic engineering systems, and the subsequent use of these cloned genomes for further experiments. This approach provides a versatile platform for in-depth genomic studies and applications in synthetic biology. Here, we cloned an entire genome of an insect-associated bacterium, Spiroplasma chrysopicola, in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and sequences of several clones were confirmed by Illumina sequencing. The cloning efficiency was high, and the clones contained only a few mutations, averaging 1.2 nucleotides per clone with a mutation rate of 4 × 10-6. The cloned genomes could be distributed and used for further research. This study serves as an initial step in the synthetic biology approach to Spiroplasma.

2.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Article En | MEDLINE | ID: mdl-37769258

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Heteroptera , Symbiosis , Male , Animals , Symbiosis/physiology , Semen , Digestive System/microbiology , Insecta , Heteroptera/physiology , Bacteria/genetics , Metamorphosis, Biological
3.
Methods Mol Biol ; 2646: 337-346, 2023.
Article En | MEDLINE | ID: mdl-36842128

Optical tweezers enable us to measure the force generated by bacterial motility and motor proteins. Here, we describe a method, using optical tweezers and related techniques, to measure the force generated during Mycoplasma gliding. An avidin-conjugated polystyrene bead trapped by a focused laser beam is bound to the surface-biotinylated Mycoplasma cell, which pulls the bead from the trap center of the laser. The force generated by Mycoplasma is calculated from a displacement measured and a spring constant of the laser trap.


Mycoplasma , Mechanical Phenomena , Optical Tweezers , Lasers , Kinetics
4.
Nat Microbiol ; 7(8): 1141-1150, 2022 08.
Article En | MEDLINE | ID: mdl-35927448

Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.


Heteroptera , Symbiosis , Animals , Escherichia coli/genetics , Heteroptera/microbiology , Insecta , Mutation , Symbiosis/genetics
5.
Front Microbiol ; 12: 747905, 2021.
Article En | MEDLINE | ID: mdl-34630372

Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.

6.
mBio ; 12(3): e0004021, 2021 06 29.
Article En | MEDLINE | ID: mdl-34044587

Mycoplasma mobile, a parasitic bacterium, glides on solid surfaces, such as animal cells and glass, by a special mechanism. This process is driven by the force generated through ATP hydrolysis on an internal structure. However, the spatial and temporal behaviors of the internal structures in living cells are unclear. In this study, we detected the movements of the internal structure by scanning cells immobilized on a glass substrate using high-speed atomic force microscopy (HS-AFM). By scanning the surface of a cell, we succeeded in visualizing particles, 2 nm in height and aligned mostly along the cell axis with a pitch of 31.5 nm, consistent with previously reported features based on electron microscopy. Movements of individual particles were then analyzed by HS-AFM. In the presence of sodium azide, the average speed of particle movements was reduced, suggesting that movement is linked to ATP hydrolysis. Partial inhibition of the reaction by sodium azide enabled us to analyze particle behavior in detail, showing that the particles move 9 nm right, relative to the gliding direction, and 2 nm into the cell interior in 330 ms and then return to their original position, based on ATP hydrolysis. IMPORTANCE The Mycoplasma genus contains bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide by a special mechanism linked to their infection and survival. The special machinery for gliding can be divided into surface and internal structures that have evolved from rotary motors represented by ATP synthases. This study succeeded in visualizing the real-time movements of the internal structure by scanning from the outside of the cell using an innovative high-speed atomic force microscope and then analyzing their behaviors.


Microscopy, Atomic Force/methods , Mycoplasma/physiology , Mycoplasma/ultrastructure , Glass , Movement , Surface Properties
7.
J Bacteriol ; 201(19)2019 10 01.
Article En | MEDLINE | ID: mdl-31308069

Mycoplasma gallisepticum, an avian-pathogenic bacterium, glides on host tissue surfaces by using a common motility system with Mycoplasma pneumoniae In the present study, we observed and analyzed the gliding behaviors of M. gallisepticum in detail by using optical microscopes. M. gallisepticum glided at a speed of 0.27 ± 0.09 µm/s with directional changes relative to the cell axis of 0.6 degree ± 44.6 degrees/5 s without the rolling of the cell body. To examine the effects of viscosity on gliding, we analyzed the gliding behaviors under viscous environments. The gliding speed was constant in various concentrations of methylcellulose but was affected by Ficoll. To investigate the relationship between binding and gliding, we analyzed the inhibitory effects of sialyllactose on binding and gliding. The binding and gliding speed sigmoidally decreased with sialyllactose concentration, indicating the cooperative binding of the cell. To determine the direct energy source of gliding, we used a membrane-permeabilized ghost model. We permeabilized M. gallisepticum cells with Triton X-100 or Triton X-100 containing ATP and analyzed the gliding of permeabilized cells. The cells permeabilized with Triton X-100 did not show gliding; in contrast, the cells permeabilized with Triton X-100 containing ATP showed gliding at a speed of 0.014 ± 0.007 µm/s. These results indicate that the direct energy source for the gliding motility of M. gallisepticum is ATP.IMPORTANCE Mycoplasmas, the smallest bacteria, are parasitic and occasionally commensal. Mycoplasma gallisepticum is related to human-pathogenic mycoplasmas-Mycoplasma pneumoniae and Mycoplasma genitalium-which cause so-called "walking pneumonia" and nongonococcal urethritis, respectively. These mycoplasmas trap sialylated oligosaccharides, which are common targets among influenza viruses, on host trachea or urinary tract surfaces and glide to enlarge the infected areas. Interestingly, this gliding motility is not related to other bacterial motilities or eukaryotic motilities. Here, we quantitatively analyze cell behaviors in gliding and clarify the direct energy source. The results provide clues for elucidating this unique motility mechanism.


Adenosine Triphosphate/metabolism , Lactose/analogs & derivatives , Mycoplasma gallisepticum/physiology , Sialic Acids/pharmacology , Energy Metabolism , Lactose/pharmacology , Mycoplasma gallisepticum/drug effects , Octoxynol/pharmacology , Viscosity/drug effects
8.
Biophys J ; 114(6): 1411-1419, 2018 03 27.
Article En | MEDLINE | ID: mdl-29590598

Mycoplasma mobile is a bacterium that uses a unique mechanism to glide on solid surfaces at a velocity of up to 4.5 µm/s. Its gliding machinery comprises hundreds of units that generate the force for gliding based on the energy derived from ATP; the units catch and pull sialylated oligosaccharides fixed to solid surfaces. In this study, we measured the stall force of wild-type and mutant strains of M. mobile carrying a bead manipulated using optical tweezers. The strains that had been enhanced for binding exhibited weaker stall forces than the wild-type strain, indicating that stall force is related to force generation rather than to binding. The stall force of the wild-type strain decreased linearly from 113 to 19 picoNewtons after the addition of 0-0.5 mM free sialyllactose (a sialylated oligosaccharide), with a decrease in the number of working units. After the addition of 0.5 mM sialyllactose, the cells carrying a bead loaded using optical tweezers exhibited stepwise movements with force increments. The force increments ranged from 1 to 2 picoNewtons. Considering the 70-nm step size, this small-unit force may be explained by the large gear ratio involved in the M. mobile gliding machinery.


Mechanical Phenomena , Mycoplasma , Biomechanical Phenomena , Stress, Mechanical , Surface Properties
9.
Bio Protoc ; 7(3): e2127, 2017 Feb 05.
Article En | MEDLINE | ID: mdl-34458448

Dozens of Mycoplasma species, belonging to class Mollicutes form a protrusion at a pole as an organelle. They bind to solid surfaces through the organelle and glide in the direction by a unique mechanism including repeated cycles of bind, pull, and release with sialylated oligosaccharides on host animal cells. The mechanical characters are critical information to understand this unique mechanism involved in their infectious process. In this protocol, we describe a method to measure the force generated by Mycoplasma mobile, the fastest gliding species in Mycoplasma. This protocol should be useful for the studies of many kinds of gliding microorganisms.

10.
mBio ; 7(3)2016 06 28.
Article En | MEDLINE | ID: mdl-27353751

UNLABELLED: Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s(-1) in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible "legs" sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism. IMPORTANCE: Mycoplasma species are the smallest bacteria and are parasitic and occasionally commensal, as represented by Mycoplasma pneumoniae, which causes so-called "walking pneumonia" in humans. Dozens of species glide on host tissues, always in the direction of the characteristic cellular protrusion, by novel mechanisms. The fastest species, Mycoplasma mobile, catches, pulls, and releases sialylated oligosaccharides (SOs), which are common targets among influenza viruses, by means of a specific receptor based on the energy of ATP hydrolysis. Here, force measurements made with optical tweezers revealed that the force required to detach a cell from SOs is smaller forward than backward along the gliding direction. The directed binding should be a clue to elucidate this novel motility mechanism.


Glass/chemistry , Mycoplasma/physiology , Oligosaccharides/chemistry , Animals , Bacterial Proteins/metabolism , Binding Sites , Fishes/microbiology , Locomotion , Oligosaccharides/physiology , Optical Tweezers , Polystyrenes/chemistry , Surface Properties
11.
Hum Genet ; 118(6): 695-707, 2006 Feb.
Article En | MEDLINE | ID: mdl-16315063

We have analyzed 105 autosomal polymorphic short tandem repeat (STR) loci for nine East and South-eastern Asian populations (two Japanese, five Han Chinese, Thai, and Burmese populations) and a Caucasian population using a multiplex PCR typing system. All the STR loci are genomewide tetranucleotide repeat markers of which the total number of observed alleles and the observed heterozygosity were 756 and 0.743, respectively, for Japanese populations. Phylogenetic analysis for these allele frequency data suggested that the Japanese populations are more closely related with southern Chinese populations than central and/or northern ones. STRUCTURE program analysis revealed the almost clearly divided and accountable population structure at K=2-6, that the two Japanese populations always formed one group separated from the other populations and never belong to different groups at K> or =3. Furthermore, our new allele frequency data for 91 loci were analyzed with those for 52 worldwide populations published by previous studies. Phylogenetic and multidimensional scaling (MDS) analyses indicated that Asian populations with large population size (six Han Chinese, three Japanese, two Southeast Asia) formed one distinct cluster and are closer to each other than other ethnic minorities in east and Southeast Asia. This pattern may be the caviar of comparing populations with greatly differing population sizes when STR loci were analyzed.


Genetics, Population , Phylogeny , Polymorphism, Genetic , Tandem Repeat Sequences , Asia, Southeastern , Asian People/genetics , Asia, Eastern , Humans , Japan , White People/genetics
12.
J Forensic Sci ; 48(1): 116-21, 2003 Jan.
Article En | MEDLINE | ID: mdl-12570210

We have previously reported a new triplex amplification and typing system by silver staining for three short tandem repeat (STR) loci, 9q2h2 (D2S3020), D15S233, and D14S299 without "microvariant" alleles such as .1, .2, and, .3 alleles in the Japanese population. In the present study, we established a new quadruplex system with an additional locus D7S809 using primer sets labeled with fluorescent multi-color dyes. Using this system, we genotyped 183 Thai people, found only one "microvariant" allele (allele 20.2) at D7S809, and calculated allele frequencies and some statistical properties at these four STR loci. From these allele frequencies at four STR loci, we performed three statistical analyses including a homozygosity test, a likelihood ratio test, and an exact test for Hardy-Weinberg equilibrium (HWE). Deviations from HWE (p < 0.05) were observed only in the two tests at the locus D7S809. In the present study, we compared the allele frequencies at these four loci in the Thai population to those in the Japanese population described previously. Consequently, all observed heterozygosities and power of discrimination (PD) at those loci in the Thai population were higher than 0.8 and 0.9, respectively, and all statistical values for discriminating power in the Thai population were slightly higher than those in the Japanese population. The combined paternity exclusion rate (combined PE) in the Thai population (0.978) was almost the same as that in the Japanese population (0.971). Therefore, this novel PCR amplification and typing system for four STR loci would be a convenient and informative DNA profiling system in the forensic field.


DNA Fingerprinting/methods , Gene Frequency , Genetics, Population , Tandem Repeat Sequences , Genotype , Humans , Likelihood Functions , Polymerase Chain Reaction , Sensitivity and Specificity , Statistics as Topic/methods , Thailand
...