Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Biol ; 20(5)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37279763

RESUMEN

Dynamical graph grammars (DGGs) are capable of modeling and simulating the dynamics of the cortical microtubule array (CMA) in plant cells by using an exact simulation algorithm derived from a master equation; however, the exact method is slow for large systems. We present preliminary work on an approximate simulation algorithm that is compatible with the DGG formalism. The approximate simulation algorithm uses a spatial decomposition of the domain at the level of the system's time-evolution operator, to gain efficiency at the cost of some reactions firing out of order, which may introduce errors. The decomposition is more coarsely partitioned by effective dimension (d= 0 to 2 or 0 to 3), to promote exact parallelism between different subdomains within a dimension, where most computing will happen, and to confine errors to the interactions between adjacent subdomains of different effective dimensions. To demonstrate these principles we implement a prototype simulator, and run three simple experiments using a DGG for testing the viability of simulating the CMA. We find evidence indicating the initial formulation of the approximate algorithm is substantially faster than the exact algorithm, and one experiment leads to network formation in the long-time behavior, whereas another leads to a long-time behavior of local alignment.


Asunto(s)
Algoritmos , Simulación por Computador
2.
In Silico Plants ; 5(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38938656

RESUMEN

We present a method for learning 'spectrally descriptive' edge weights for graphs. We generalize a previously known distance measure on graphs (graph diffusion distance [GDD]), thereby allowing it to be tuned to minimize an arbitrary loss function. Because all steps involved in calculating this modified GDD are differentiable, we demonstrate that it is possible for a small neural network model to learn edge weights which minimize loss. We apply this method to discriminate between graphs constructed from shoot apical meristem images of two genotypes of Arabidopsis thaliana specimens: wild-type and trm678 triple mutants with cell division phenotype. Training edge weights and kernel parameters with contrastive loss produce a learned distance metric with large margins between these graph categories. We demonstrate this by showing improved performance of a simple k -nearest-neighbour classifier on the learned distance matrix. We also demonstrate a further application of this method to biological image analysis. Once trained, we use our model to compute the distance between the biological graphs and a set of graphs output by a cell division simulator. Comparing simulated cell division graphs to biological ones allows us to identify simulation parameter regimes which characterize mutant versus wild-type Arabidopsis cells. We find that trm678 mutant cells are characterized by increased randomness of division planes and decreased ability to avoid previous vertices between cell walls.

3.
Front Syst Biol ; 22022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36712785

RESUMEN

Many emergent, non-fundamental models of complex systems can be described naturally by the temporal evolution of spatial structures with some nontrivial discretized topology, such as a graph with suitable parameter vectors labeling its vertices. For example, the cytoskeleton of a single cell, such as the cortical microtubule network in a plant cell or the actin filaments in a synapse, comprises many interconnected polymers whose topology is naturally graph-like and dynamic. The same can be said for cells connected dynamically in a developing tissue. There is a mathematical framework suitable for expressing such emergent dynamics, "stochastic parameterized graph grammars," composed of a collection of the graph- and parameter-altering rules, each of which has a time-evolution operator that suitably moves probability. These rule-level operators form an operator algebra, much like particle creation/annihilation operators or Lie group generators. Here, we present an explicit and constructive calculation, in terms of elementary basis operators and standard component notation, of what turns out to be a general combinatorial expression for the operator algebra that reduces products and, therefore, commutators of graph grammar rule operators to equivalent integer-weighted sums of such operators. We show how these results extend to "dynamical graph grammars," which include rules that bear local differential equation dynamics for some continuous-valued parameters. Commutators of such time-evolution operators have analytic uses, including deriving efficient simulation algorithms and approximations and estimating their errors. The resulting formalism is complementary to spatial models in the form of partial differential equations or stochastic reaction-diffusion processes. We discuss the potential application of this framework to the remodeling dynamics of the microtubule cytoskeleton in cortical microtubule networks relevant to plant development and of the actin cytoskeleton in, for example, a growing or shrinking synaptic spine head. Both cytoskeletal systems underlie biological morphodynamics.

4.
PLoS One ; 16(4): e0249624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33905423

RESUMEN

We define a new family of similarity and distance measures on graphs, and explore their theoretical properties in comparison to conventional distance metrics. These measures are defined by the solution(s) to an optimization problem which attempts find a map minimizing the discrepancy between two graph Laplacian exponential matrices, under norm-preserving and sparsity constraints. Variants of the distance metric are introduced to consider such optimized maps under sparsity constraints as well as fixed time-scaling between the two Laplacians. The objective function of this optimization is multimodal and has discontinuous slope, and is hence difficult for univariate optimizers to solve. We demonstrate a novel procedure for efficiently calculating these optima for two of our distance measure variants. We present numerical experiments demonstrating that (a) upper bounds of our distance metrics can be used to distinguish between lineages of related graphs; (b) our procedure is faster at finding the required optima, by as much as a factor of 103; and (c) the upper bounds satisfy the triangle inequality exactly under some assumptions and approximately under others. We also derive an upper bound for the distance between two graph products, in terms of the distance between the two pairs of factors. Additionally, we present several possible applications, including the construction of infinite "graph limits" by means of Cauchy sequences of graphs related to one another by our distance measure.


Asunto(s)
Algoritmos , Gráficos por Computador , Interpretación de Imagen Asistida por Computador/métodos , Difusión , Humanos
5.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845085

RESUMEN

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Asunto(s)
Biología de Sistemas/métodos , Animales , Humanos , Modelos Logísticos , Modelos Biológicos , Programas Informáticos
6.
Nat Cell Biol ; 22(3): 310-320, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32144411

RESUMEN

Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transcriptoma , Animales , Neoplasias de la Mama/metabolismo , Metabolismo Energético , Femenino , Humanos , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Metástasis de la Neoplasia , Fosforilación Oxidativa , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética
8.
Phys Rev E ; 99(6-1): 063315, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330605

RESUMEN

Many physical systems are described by probability distributions that evolve in both time and space. Modeling these systems is often challenging due to their large state space and analytically intractable or computationally expensive dynamics. To address these problems, we study a machine-learning approach to model reduction based on the Boltzmann machine. Given the form of the reduced model Boltzmann distribution, we introduce an autonomous differential equation system for the interactions appearing in the energy function. The reduced model can treat systems in continuous space (described by continuous random variables), for which we formulate a variational learning problem using the adjoint method to determine the right-hand sides of the differential equations. This approach can be used to enforce a reduced physical model by a suitable parametrization of the differential equations. The parametrization we employ uses the basis functions from finite-element methods, which can be used to model any physical system. One application domain for such physics-informed learning algorithms is to modeling reaction-diffusion systems. We study a lattice version of the Rössler chaotic oscillator, which illustrates the accuracy of the moment closure approximation made by the method and its dimensionality reduction power.

9.
Bull Math Biol ; 81(8): 3385-3420, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31175549

RESUMEN

Declarative modeling uses symbolic expressions to represent models. With such expressions, one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them.


Asunto(s)
Modelos Biológicos , Algoritmos , Fenómenos Bioquímicos , División Celular/fisiología , Simulación por Computador , Citoesqueleto/fisiología , Biología Evolutiva , Conceptos Matemáticos , Desarrollo de la Planta/fisiología , Probabilidad , Lenguajes de Programación , Semántica , Biología de Sistemas
10.
Nat Commun ; 10(1): 2360, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142740

RESUMEN

Mechanical signals play many roles in cell and developmental biology. Several mechanotransduction pathways have been uncovered, but the mechanisms identified so far only address the perception of stress intensity. Mechanical stresses are tensorial in nature, and thus provide dual mechanical information: stress magnitude and direction. Here we propose a parsimonious mechanism for the perception of the principal stress direction. In vitro experiments show that microtubules are stabilized under tension. Based on these results, we explore the possibility that such microtubule stabilization operates in vivo, most notably in plant cells where turgor-driven tensile stresses exceed greatly those observed in animal cells.


Asunto(s)
Mecanotransducción Celular/fisiología , Microtúbulos/fisiología , Células Vegetales , Estrés Mecánico , Resistencia a la Tracción/fisiología , Pared Celular , Técnicas In Vitro
11.
Methods Mol Biol ; 1945: 1-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30945240

RESUMEN

We present a tutorial on using Pycellerator for biomolecular simulations. Models are described in human readable (and editable) text files (UTF8 or ASCII) containing collections of reactions, assignments, initial conditions, function definitions, and rate constants. These models are then converted into a Python program that can optionally solve the system, e.g., as a system of differential equations using ODEINT, or be run by another program. The input language implements an extended version of the Cellerator arrow notation, including mass action, Hill functions, S-Systems, MWC, and reactions with user-defined kinetic laws. Simple flux balance analysis is also implemented. We will demonstrate the implementation and analysis of progressively more complex models, starting from simple mass action through indexed cascades. Pycellerator can be used as a library that is integrated into other programs, run as a command line program, or in iPython notebooks. It is implemented in Python 2.7 and available under an open source GPL license.


Asunto(s)
Simulación por Computador , Programas Informáticos , Biología de Sistemas/métodos , Humanos , Cinética , Modelos Biológicos , Lenguajes de Programación , Interfaz Usuario-Computador
12.
J Chem Phys ; 149(3): 034107, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037235

RESUMEN

Finding reduced models of spatially distributed chemical reaction networks requires an estimation of which effective dynamics are relevant. We propose a machine learning approach to this coarse graining problem, where a maximum entropy approximation is constructed that evolves slowly in time. The dynamical model governing the approximation is expressed as a functional, allowing a general treatment of spatial interactions. In contrast to typical machine learning approaches which estimate the interaction parameters of a graphical model, we derive Boltzmann-machine like learning algorithms to estimate directly the functionals dictating the time evolution of these parameters. By incorporating analytic solutions from simple reaction motifs, an efficient simulation method is demonstrated for systems ranging from toy problems to basic biologically relevant networks. The broadly applicable nature of our approach to learning spatial dynamics suggests promising applications to multiscale methods for spatial networks, as well as to further problems in machine learning.

13.
Bioinformatics ; 32(4): 629-31, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26504142

RESUMEN

MOTIVATION: We introduce Pycellerator, a Python library for reading Cellerator arrow notation from standard text files, conversion to differential equations, generating stand-alone Python solvers, and optionally running and plotting the solutions. All of the original Cellerator arrows, which represent reactions ranging from mass action, Michales-Menten-Henri (MMH) and Gene-Regulation (GRN) to Monod-Wyman-Changeaux (MWC), user defined reactions and enzymatic expansions (KMech), were previously represented with the Mathematica extended character set. These are now typed as reaction-like commands in ASCII text files that are read by Pycellerator, which includes a Python command line interface (CLI), a Python application programming interface (API) and an iPython notebook interface. RESULTS: Cellerator reaction arrows are now input in text files. The arrows are parsed by Pycellerator and translated into differential equations in Python, and Python code is automatically generated to solve the system. Time courses are produced by executing the auto-generated Python code. Users have full freedom to modify the solver and utilize the complete set of standard Python tools. The new libraries are completely independent of the old Cellerator software and do not require Mathematica. AVAILABILITY AND IMPLEMENTATION: All software is available (GPL) from the github repository at https://github.com/biomathman/pycellerator/releases. Details, including installation instructions and a glossary of acronyms and terms, are given in the Supplementary information.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Lenguajes de Programación , Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Programas Informáticos
14.
Phys Biol ; 12(4): 045005, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26086598

RESUMEN

A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calcio/química , Calmodulina/química , Sinapsis/enzimología , Algoritmos , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Cinética , Modelos Químicos , Modelos Neurológicos , Simulación de Dinámica Molecular , Probabilidad
15.
Proc Natl Acad Sci U S A ; 112(15): 4815-20, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25825722

RESUMEN

The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here we present a quantitative model of these rules that incorporates different observed features of cell division. Each feature is incorporated into a "potential function" that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces.


Asunto(s)
Arabidopsis/citología , Meristema/citología , Modelos Biológicos , Brotes de la Planta/citología , Algoritmos , Arabidopsis/metabolismo , División Celular , Linaje de la Célula , Tamaño de la Célula , Pared Celular/metabolismo , Simulación por Computador , Meristema/metabolismo , Microscopía Confocal , Brotes de la Planta/metabolismo , Imagen de Lapso de Tiempo
16.
Front Plant Sci ; 4: 408, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24137172

RESUMEN

Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction.

17.
Phys Biol ; 10(3): 035009, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735739

RESUMEN

The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Procesos Estocásticos , Biología de Sistemas , Algoritmos , Teorema de Bayes , Cadenas de Markov
18.
J Chem Phys ; 138(10): 104111, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23514469

RESUMEN

We study and analyze the stochastic dynamics of a reversible bimolecular reaction A + B ↔ C called the "trivalent reaction." This reaction is of a fundamental nature and is part of many biochemical reaction networks. The stochastic dynamics is given by the stochastic master equation, which is difficult to solve except when the equilibrium state solution is desired. We present a novel way of finding the eigenstates of this system of difference-differential equations, using perturbation analysis of ordinary differential equations arising from approximation of the difference equations. The time evolution of the state probabilities can then be expressed in terms of the eigenvalues and the eigenvectors.


Asunto(s)
Fenómenos Bioquímicos , Simulación por Computador , Modelos Biológicos , Cinética , Modelos Estadísticos , Procesos Estocásticos
19.
J Chem Phys ; 137(21): 214104, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23231214

RESUMEN

A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.


Asunto(s)
Algoritmos , Modelos Químicos , Cinética , Cadenas de Markov , Reproducibilidad de los Resultados , Procesos Estocásticos
20.
Methods Cell Biol ; 110: 285-323, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22482954

RESUMEN

Quantitative studies in plant developmental biology require monitoring and measuring the changes in cells and tissues as growth gives rise to intricate patterns. The success of these studies has been amplified by the combined strengths of two complementary techniques, namely live imaging and computational image analysis. Live imaging records time-lapse images showing the spatial-temporal progress of tissue growth with cells dividing and changing shape under controlled laboratory experiments. Image processing and analysis make sense of these data by providing computational ways to extract and interpret quantitative developmental information present in the acquired images. Manual labeling and qualitative interpretation of images are limited as they don't scale well to large data sets and cannot provide field measurements to feed into mathematical and computational models of growth and patterning. Computational analysis, when it can be made sufficiently accurate, is more efficient, complete, repeatable, and less biased. In this chapter, we present some guidelines for the acquisition and processing of images of sepals and the shoot apical meristem of Arabidopsis thaliana to serve as a basis for modeling. We discuss fluorescent markers and imaging using confocal laser scanning microscopy as well as present protocols for doing time-lapse live imaging and static imaging of living tissue. Image segmentation and tracking are discussed. Algorithms are presented and demonstrated together with low-level image processing methods that have proven to be essential in the detection of cell contours. We illustrate the application of these procedures in investigations aiming to unravel the mechanical and biochemical signaling mechanisms responsible for the coordinated growth and patterning in plants.


Asunto(s)
Arabidopsis/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Plantas Modificadas Genéticamente/ultraestructura , Transducción de Señal/fisiología , Imagen de Lapso de Tiempo/métodos , Algoritmos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Flores/ultraestructura , Colorantes Fluorescentes , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Microscopía Confocal , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/ultraestructura , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...