Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124229, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38565054

Three dye-loaded tunable dual-emission colorimetric fluorescent probes RhB@UiO-66-Ph (R@U-P) were prepared by in-situ encapsulation method under solvothermal conditions. The resonance energy transfer between UiO-66-Ph and RhB made the dual emission of R@U-P easily tunable with the embedded dye content changing. The R@U-P composites achieved emission from purple light to red light, and served as probes to realize comparative detection of Fe3+, Fe2+ and Cr2O72- in water through colorimetric or quenching detection mode. Mechanism study indicates that the resonance energy transfer or electron transfer interactions between R@U-P composites and inorganic ions resulted in the relative changes of the two emission peaks and realized the selective detection of analytes. The preparation and application of R@U-P probes provide a promising strategy for the in-situ encapsulation dye to obtain two dual-emission composites for the comparative detection of Fe3+, Fe2+ and Cr2O72- in water samples.

2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38473757

Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.


Cichlids , Streptococcal Infections , Tilapia , Animals , Cichlids/metabolism , Streptococcus agalactiae , Gene Expression Regulation , Amino Acid Sequence , Tilapia/metabolism , Collectins/genetics
3.
J Enzyme Inhib Med Chem ; 39(1): 2296355, 2024 Dec.
Article En | MEDLINE | ID: mdl-38234133

Orthosiphon aristatus is a well-known folkloric medicine and herb for Guangdong soup for the treatment of rheumatism in China. Eight isopimarane-type and migrated pimarane-type diterpenoids (1-8), including a new one with a rarely occurring α,ß-unsaturated diketone C-ring, were isolated from O. aristatus. Their structures were determined by spectroscopic methods and quantum chemical calculations. Furthermore, the most abundant compound, orthosiphol K, was structurally modified by modern synthetic techniques to give seven new derivatives (9-15). The anti-rheumatoid arthritis activity of these diterpenoids were evaluated on a TNF-α induced MH7A human rheumatoid fibroblast-like synoviocyte model. Compound 10 showed the most potent activity among these compounds. Based on their inhibitory effects on the release levels of IL-1ß, the preliminary structure-activity relationships were concluded. Furthermore, western blot analysis revealed that 10 could increase the expression of IκBα and decrease the expression of NF-κB p65, and the expression levels of COX-2 and NLRP3 proteins were consequently down-regulated.


Arthritis, Rheumatoid , Diterpenes , Orthosiphon , Humans , Orthosiphon/chemistry , Orthosiphon/metabolism , Abietanes , Arthritis, Rheumatoid/drug therapy , Tumor Necrosis Factor-alpha , Diterpenes/pharmacology , Diterpenes/chemistry , NF-kappa B/metabolism
4.
Heliyon ; 9(8): e19155, 2023 Aug.
Article En | MEDLINE | ID: mdl-37664700

Introduction: Bufei Huayu Decoction (BFHY) is a clinical prescription with reported efficacy in enhancing the therapeutic outcomes of chemotherapeutic agents for non-small cell lung cancer (NSCLC). However, the underlying metabolic mechanism of BFHY's action remains unexplored. Objective: The objective of this study is to investigate the global metabolic effects of cisplatin and cisplatin plus BFHY on NSCLC. Methods: Three groups (NSCLC, cisplatin, and cisplatin + BFHY) underwent a serum metabolomics procedure based on UHPLC-QE-MS. Then, a pathway analysis was carried out using MetaboAnalyst 3.0 to elucidate the therapeutic action routes of cisplatin and cisplatin plus BFHY in NSCLC. Results: In the subcutaneous NSCLC model, both cisplatin and cisplatin + BFHY reduced the tumor volume and caused cell death. In comparison to cisplatin alone, cisplatin + BFHY showed a stronger tumor-suppressing impact. Furthermore, the same 16 metabolic signaling pathways were shared by the cisplatin and cisplatin + BFHY treatments. These typical metabolites are mainly involved in amino acid metabolism, lipid mobilization, nucleic acid metabolism and carbohydrate metabolites. Conclusions: Potential biomarkers and metabolic networks of cisplatin and cisplatin + BFHY's anti-tumor actions are revealed in our investigation.

5.
Int J Genomics ; 2023: 3568416, 2023.
Article En | MEDLINE | ID: mdl-37252635

Aim: We sought to profile gut microbiota's role in combination of Bu Fei Hua Yu (BFHY) with cisplatin treatment. Methods: Non-small cell lung cancer (NSCLC) mice model were constructed followed by treatment with cisplatin alone or combined with BFHY. Mice weight and tumor volume were measured during the experiment. And mice cecum were detected by hematoxylin and eosin, cecum contents were collected for Enzyme Linked ImmuneSorbent Assay, and stool were profiled for metagenomic sequencing. Results: Combination of BFHY with cisplatin treatment decreased the tumor growth and relieved the damage of cecum. Expressions of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), monocyte chemotactic protein 1 (MCP), and interferon-γ (IFN-γ) were decreased compared with cisplatin treatment alone. Linear discriminant analysis effect size analysis showed that g_Parabacteroides was downregulated and g_Escherichia and g_Blautia were upregulated after cisplatin treatment. After combination with BFHY, g_Bacteroides and g_Helicobacter were decreased. g_Klebsiella, g_Unclssified_Proteobacteria, and g_Unclssified_Clostridiates were increased. Moreover, heatmap results showed that Bacteroides abundance was increased significantly after cisplatin treatment; BFHY combination treatment reversed this state. Function analysis revealed that multiple functions were slightly decreased in cisplatin treatment alone and increased significantly after combination with BFHY. Conclusion: Our study provided evidence of an efficacy of combination of BFHY with cisplatin on treatment of NSCLC and revealed that gut microbiota plays a role in it. The above results provide new ideas on NSCLC treatment.

6.
J Immunol ; 205(12): 3443-3455, 2020 12 15.
Article En | MEDLINE | ID: mdl-33199536

The innate immune system is an ancient defense system in the process of biological evolution, which can quickly and efficiently resist pathogen infection. In mammals, mannose-binding lectin (MBL) is a key molecule in the innate immune and plays an essential role in the first line of host defense against pathogenic bacteria. However, the evolutionary origins and ancient roles of immune defense of MBL and its mechanism in clearance of microbial pathogens are still unclear, especially in early vertebrates. In this study, Oreochromis niloticus MBL (OnMBL) was successfully isolated and purified from the serum of Nile tilapia (O. niloticus). The OnMBL was able to bind and agglutinate with two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila Interestingly, the OnMBL was able to significantly inhibit the proliferation of pathogenic bacteria and reduce the inflammatory response. Upon bacterial challenge, the downregulation of OnMBL expression by RNA interference could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by reinjection of the OnMBL, which restored the healthy status of the knockdown tilapia. Moreover, a mechanistic analysis revealed that the OnMBL could clear pathogenic bacteria by collaborating with cell-surface calreticulin to facilitate phagocytosis in a complement activation-independent manner. To our knowledge, these results provide the first evidence on the antibacterial response mechanism of MBL performing evolutionary conserved function to promote opsonophagocytosis of macrophages in early vertebrates and reveals new insights into the understanding of the evolutionary origins and ancient roles basis of the C-type lectins in the innate immune defense.


Aeromonas hydrophila/immunology , Cichlids/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Mannose-Binding Lectin/immunology , Streptococcal Infections/immunology , Streptococcus agalactiae/immunology , Animals , Cichlids/microbiology , Female , Fish Diseases/microbiology , Fish Proteins/chemistry , Fish Proteins/isolation & purification , Gram-Negative Bacterial Infections/veterinary , Mannose-Binding Lectin/chemistry , Mannose-Binding Lectin/isolation & purification , Mice , Mice, Inbred BALB C , Streptococcal Infections/veterinary
7.
Dev Comp Immunol ; 103: 103532, 2020 02.
Article En | MEDLINE | ID: mdl-31678076

Complement component 1q (C1q), together with C1r and C1s to form C1, recognize and bind immune complex to initiate the classical complement pathway. In this study, C1q subunit molecules (XlC1qA, XlC1qB, XlC1qC) were cloned and analyzed from Xenopus laevis (X. laevis). The open reading frame (ORF) of XlC1qA is 819 bp of nucleotide sequence encoding 272 amino acids, the ORF of XlC1qB is 711 bp encoding 236 aa, and the XlC1qC is consists of 732 bp encoding 243 aa. The deduced amino acid sequences contain a collagen-like region (CLR), Gly-X-Y repeats in the N-terminus and a C1q family domain at the C-terminus. Phylogenetic analysis revealed that the XlC1qs are clustered with the amphibian clade. Expression analysis indicated that the XlC1qs exhibited constitutive expression in all examined tissues, with the highest expression in liver. Additionally, XlC1q could interact with heat-aggregated mouse IgG and IgM, Xenopus IgM and Nile tilapia IgM, respectively, indicating the functional conservation of XlC1q binding to immunoglobulins. Further, XlC1qs can inhibit C1q-dependent hemolysis of sensitized sheep red blood cells with concentration-dependent manner. These data collectively suggest that the function of C1qs in X. laevis may be conserved in interaction with immunoglobulins, as that of mammals and teleosts.


Complement C1q/immunology , Xenopus laevis/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin M/immunology
...