Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Hazard Mater ; 475: 134870, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876019

RESUMEN

Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Humanos , Ozono/toxicidad , Masculino , Femenino , Adulto , Contaminantes Atmosféricos/toxicidad , Adulto Joven , Lisofosfatidilcolinas/sangre , Glicerofosfolípidos/sangre , Glicerofosfolípidos/metabolismo , Exposición a Riesgos Ambientales , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/sangre
2.
J Environ Sci (China) ; 144: 35-44, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802236

RESUMEN

Sandstorm, which injects generous newly emerging microbes into the atmosphere covering cities, adversely affects the air quality in built environments. However, few studies have examined the change of airborne bacteria during severe sandstorm events. In this work, we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia on March 15th, 2021, which affected large areas of China and Mongolia. The characteristics of the sandstorm were compared with those of the subsequent clean and haze days. The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing technology. During the sandstorm, the particulate matter (PM) concentration and bacterial richness were extremely high (PM2.5: 207 µg/m3; PM10: 1630 µg/m3; 5700 amplicon sequence variants/m3). In addition, the sandstorm brought 10 pathogenic bacterial genera to the atmosphere, posing a grave hazard to human health. As the sandstorm subsided, small bioaerosols (0.65-1.1 µm) with a similar bacterial community remained suspended in the atmosphere, bringing possible long-lasting health risks.


Asunto(s)
Microbiología del Aire , Bacterias , Monitoreo del Ambiente , Beijing , Bacterias/clasificación , Bacterias/genética , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos
3.
Sci Total Environ ; 912: 168970, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043806

RESUMEN

We conducted an SVOC mass transfer and child-exposure modeling analysis considering the combined sorption of multiple SVOCs containing DnBP, BBP, DEHP, DINP and DINCH in indoor environments. A mechanistic model was applied to describe the organic film formation, and a partition-coefficient-prediction model was originally developed for the realistic organic films. The characteristics of film formation on impermeable surfaces were examined based on three different assumptions: the widely-used constant Kns,im assumption, Koa assumption, and the proposed Kom assumption (predicted specifically for the realistic organic films in this study). After long-term SVOC sorption, the organic film reached increasing equilibrium gradually under constant Kns,im assumption. While under Koa and Kom assumption, organic films exhibited nearly linear increases on surfaces, the trends of which agreed well with field studies. However, the film thicknesses calculated under Kom assumption with larger film partition coefficients were approximately twice larger than those under Koa assumption. Meanwhile, Horizontal surfaces with higher deposition rates of particle-phase SVOCs exhibited larger velocities of film growth compared to vertical surfaces. Under the Kom assumption, exposures of hazardous SVOCs for a 3-year-old child increased by 87.5 %-198.7 % even with the weekly cleaning of indoor impermeable surfaces, carpet and cloth. This study is anticipated to provide valuable insights into the film-forming characteristics of multiple SVOCs and the accompanying significant health risks to human beings in indoor environments.

4.
Lancet Planet Health ; 7(11): e900-e911, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37940210

RESUMEN

BACKGROUND: High-level exposure to indoor air pollutants (IAPs) and their corresponding adverse health effects have become a public concern in China in the past 10 years. However, neither national nor provincial level burden of disease attributable to multiple IAPs has been reported for China. This is the first study to estimate and rank the annual burden of disease and the financial costs attributable to targeted residential IAPs at the national and provincial level in China from 2000 to 2017. METHODS: We first did a systematic review and meta-analysis of 117 articles from 37 231 articles identified in major databases, and obtained exposure-response relationships for the candidate IAPs. The exposure levels to these IAPs were then collected by another systematic review of 1864 articles selected from 52 351 articles. After the systematic review, ten IAPs with significant and robust exposure-response relationships and sufficient exposure data were finally targeted: PM2·5, nitrogen dioxide, sulphur dioxide, ozone, carbon monoxide, radon, formaldehyde, benzene, toluene, and p-dichlorobenzene. The annual exposure levels in residences were then evaluated in all 31 provinces in mainland China continuously from 2000 to 2017, using the spatiotemporal Gaussian process regression model to analyse indoor originating IAPs, and the infiltration factor method to analyse outdoor originating IAPs. The disability-adjusted life-years (DALYs) attributable to the targeted IAPs were estimated at both national and provincial levels in China, using the population attributable fraction method. Financial costs were estimated by an adapted human capital approach. FINDINGS: From 2000 to 2017, annual DALYs attributable to the ten IAPs in mainland China decreased from 4620 (95% CI 4070-5040) to 3700 (3210-4090) per 100 000. Nevertheless, in 2017, IAPs still ranked third among all risk factors, and their DALYs and financial costs accounted for 14·1% (95% CI 12·3-15·6) of total DALYs and 3·45% (3·01-3·82) of the gross domestic product. Specifically, the rank of ten targeted IAPs in order of their contribution to DALYs in 2017 was PM2·5, carbon monoxide, radon, benzene, nitrogen dioxide, ozone, sulphur dioxide, formaldehyde, toluene, and p-dichlorobenzene. The DALYs attributable to IAPs were 9·50% higher than those attributable to outdoor air pollution in 2017. For the leading IAP, PM2·5, the DALYs attributable to indoor origins are 18·3% higher than those of outdoor origins. INTERPRETATION: DALYs attributed to IAPs in China have decreased by 20·0% over the past two decades. Even so, they are still much higher than those in the USA and European countries. This study can provide a basis for determining which IAPs to target in various indoor air quality standards and for estimating the health and economic benefits of various indoor air quality control approaches, which will help to reduce the adverse health effects of IAPs in China. FUNDING: The National Key Research and Development Program of China and the National Natural Science Foundation of China.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Radón , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Dióxido de Azufre/análisis , Benceno/efectos adversos , Benceno/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Formaldehído/análisis , Costo de Enfermedad , Material Particulado/análisis , Radón/análisis , Ozono/análisis , Tolueno/análisis
5.
Sci Data ; 10(1): 715, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853016

RESUMEN

Household air purifiers have been widely used as an effective approach to improving indoor air quality. Air purifiers can automatically record indoor air quality parameters, providing valuable data resources for in-depth data-driven analysis. This work presents a one-year hourly indoor air quality dataset collected by household air purifiers in 100 residential homes in 18 provinces across 4 different climate zones in China. The data were collected from July 1, 2021, to July 1, 2022. The concentrations of formaldehyde, PM2.5, TVOC, temperature, relative humidity, on/off status and the airflow rate of air purifiers during operations were recorded hourly. The data were carefully screened with possibly missing values imputed using chained equation-based methods if any. The dataset provides a comprehensive and detailed picture of the indoor air quality in residential buildings, enabling evaluations on the cleaning effect of air purifiers, the impact of outdoor climate change on indoor air quality, and the future trends in indoor human behavior.

6.
Small Methods ; 7(6): e2201302, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36871146

RESUMEN

Conventional adsorbents and catalysts shaped by granulation or extrusion have high pressure drop and poor flexibility for chemical, energy, and environmental processes. Direct ink writing (DIW), a kind of 3D printing, has evolved into a crucial technique for manufacturing scalable configurations of adsorbents and catalysts with satisfactory programmable automation, highly optional materials, and reliable construction. Particularly, DIW can generate specific morphologies required for excellent mass transfer kinetics, which is essential in gas-phase adsorption and catalysis. Here, DIW methodologies for mass transfer enhancement in gas-phase adsorption and catalysis, covering the raw materials, fabrication process, auxiliary optimization methods, and practical applications are comprehensively summarized. The prospects and challenges of DIW methodology in realizing good mass transfer kinetics are discussed. Ideal components with a gradient porosity, multi-material structure, and hierarchical morphology are proposed for future investigations.

7.
J Hazard Mater ; 441: 129821, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36067559

RESUMEN

Ambient particulate matter (PM) poses severe environmental health risks to the public globally, and efficient filtration technologies are urgently needed for air ventilation. In this contribution, to overcome the efficiency-resistance trade-off for fibrous filtration, we introduced an electrostatic polydopamine-interface-mediated (e-PIM) filter utilizing a combined effect of particle pre-charging and filter polarizing. After delineating the PM-fiber interactions in electrostatic filtration, we designed a composite fiber structure and fabricated the filters by a two-step dip-coating. The surface topography and electrical potential of the polyester (PET) coarse substrates were regulated by successively coating polydopamine (PDA) layers and manganese oxide clusters. By this means, an 8-mm-thick Mn-P @ P-100 filter possessed improved efficiency of 96.05%, 97.60%, and 99.14% for 0.3-0.5 µm, 0.5-1 µm, and 1-3 µm particles, the ultralow air resistance of 10.4 Pa at a filtration velocity of 0.5 m/s, and steady ozone removal property. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. We expect e-PIM filters and the filtration prototype will be potential candidates as effective and low-cost air cleaning devices for a sustainable and healthy environment.


Asunto(s)
Filtros de Aire , Ozono , Filtración , Indoles , Ozono/química , Material Particulado , Poliésteres , Polímeros , Electricidad Estática
8.
Indoor Air ; 32(11): e13154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36437653

RESUMEN

Indoor radon exposure is thought to be associated with adverse health effect as lung cancer. Lung cancer incidences in China have been the highest worldwide during the past two decades. It is important to quantitively address indoor radon exposure and its health effect, especially in countries like China. In this paper, we have conducted a meta-analysis based on indoor radon and its health effect studies from a systematic review between 2000 and 2020. A total of 8 studies were included for lung cancer. We found that the relative risk (RR) was 1.01 (95% CI: 1.01-1.02) per 10 Bq/m3 increase of indoor radon for lung cancer in China. The subgroup analysis found no significant difference between the conclusions from the studies from China and other regions. The health effect of indoor radon exposure is relatively consistent for the low-exposure and high-exposure groups in the subgroup analysis. With a better understanding of exposure level of indoor radon, the outcomes and conclusions of this study will provide supports for next phase of researches on estimation of environmental burden of disease by indoor radon exposures in countries like China.


Asunto(s)
Contaminación del Aire Interior , Neoplasias Pulmonares , Radón , Humanos , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Factores de Riesgo , Radón/efectos adversos , Radón/análisis , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , China/epidemiología
9.
Indoor Air ; 32(11): e13170, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36437665

RESUMEN

The burden of disease attributed to the indoor exposure to sulfur dioxide (SO2 ), nitrogen dioxide (NO2 ), ozone (O3 ), and carbon monoxide (CO) is not clear, and the quantitative concentration-response relationship is a prerequisite. This is a systematic review to summarize the quantitative concentration-response relationships by screening and analyzing the polled effects of population-based epidemiological studies. After collecting literature published between 1980 and 2019, a total of 19 health outcomes in 101 studies with 182 health risk estimates were recruited. By meta-analysis, the leave-one-out sensitivity analysis and Egger's test for publication bias, the robust and reliable effects were found for SO2 (per 10 µg/m3 ) with chronic obstructive pulmonary diseases (COPD) (pooled relative risks [RRs] 1.016, 95% CI: 1.012-1.021) and cardiovascular diseases (CVD) (RR 1.012, 95%CI: 007-1.018), respectively. NO2 (per 10 µg/m3 ) had the pooled RRs for childhood asthma, preterm birth, lung cancer, diabetes, and COPD by 1.134 (1.084-1.186), 1.079 (1.007-1.157), 1.055 (1.010-1.101), 1.019 (1.009-1.029), and 1.016 (1.012-1.120), respectively. CO (per 1 mg/m3 ) was significantly associated with Parkinson's disease (RR 1.574, 95% CI: 1.069-2.317) and CVD (RR 1.024, 95% CI: 1.011-1.038). No robust effects were observed for O3 . This study provided evidence and basis for further estimation of the health burden attributable to the four gaseous pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Enfermedades Cardiovasculares , Ozono , Nacimiento Prematuro , Enfermedad Pulmonar Obstructiva Crónica , Recién Nacido , Femenino , Humanos , Niño , Dióxido de Nitrógeno , Monóxido de Carbono , Dióxido de Azufre , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Azufre
10.
Indoor Air ; 32(10): e13141, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305078

RESUMEN

Exposure to formaldehyde causes a variety of adverse health outcomes, while the distributions of indoor formaldehyde in different building types are still not clear in China. In this study, based on the systematic review of previously published data and Monte Carlo simulation, we assessed geographical and temporal distributions of indoor formaldehyde concentrations in residences, schools, and offices across China. A total of 397 studies covered 34 provincial-level regions since 1986 were collected. The results showed that indoor formaldehyde concentrations in residences, schools, and offices in nationwide were decreasing over years due to the publishment of indoor air quality standards since 2002. During 2011 to 2015, the median concentrations of indoor formaldehyde in newly renovated residences, schools, and offices were 153 µg/m3 , 163 µg/m3 , and 94 µg/m3 , with an exceeding rate of 82%, 46%, and 91% considering a standard threshold of 100 µg/m3 at that time, while the exceeding rate was less than 5% for buildings that were renovated beyond one year. Our findings release the temporal trends and geographic distributions of indoor formaldehyde concentrations in residences, schools, and offices in China in the past 30 years, and provide basic data for the comprehensive evaluation of disease burden attributable to indoor formaldehyde exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Hipersensibilidad Respiratoria , Humanos , Contaminación del Aire Interior/análisis , Formaldehído/análisis , Vivienda , Instituciones Académicas , Hipersensibilidad Respiratoria/inducido químicamente , China , Contaminantes Atmosféricos/análisis
11.
Indoor Air ; 32(9): e13091, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36168233

RESUMEN

The last two decades have witnessed rapid urbanization and economic growth accompanied by severe indoor air pollution of volatile organic compounds (VOCs) in China. However, indoor VOC pollution across China has not been well characterized and documented. This study is a systematic review of field measurements of eight target VOCs (benzene, toluene, xylenes, acetaldehyde, p-dichlorobenzene, butadiene, trichloroethylene, and tetrachloroethylene) in residences, offices, and schools in China from 2000 to 2021. The results show that indoor pollution of benzene, toluene, and xylenes has been more serious in China than in other countries. Spatiotemporal distribution shows lower indoor VOC levels in east and south-east regions and a declining trend from 2000 to 2021. Moving into a dwelling more than 1 year after decoration and improving ventilation could significantly reduce exposure to indoor VOCs. Reducing benzene exposure is urgently needed because it is associated with greater health risks (4.5 × 10-4 for lifetime cancer risk and 8.3 for hazard quotient) than any other VOCs. The present study enriches the database of indoor VOC levels and provides scientific evidence for improving national indoor air quality standards as well as estimating the attributable disease burden caused by VOCs in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Tetracloroetileno , Tricloroetileno , Compuestos Orgánicos Volátiles , Acetaldehído , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Benceno/análisis , Butadienos , China , Monitoreo del Ambiente , Medición de Riesgo , Instituciones Académicas , Tolueno , Compuestos Orgánicos Volátiles/análisis , Xilenos/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-35656762

RESUMEN

Integrating metal-organic frameworks (MOFs) into electrospun nanofiber filters has become an effective method for improving particle filtration efficiency. This study hypothesized that there is an optimal amount of MOFs that can be integrated into electrospun nanofiber filters to achieve the maximum particle removal efficiency while minimizing the corresponding MOF synthesis time. To test the hypothesis, this study systematically explored the influence of the time-dependent in situ growing process of zeolitic imidazolate framework-67 (ZIF-67), a typical type of MOFs, on the filtration performance of polyacrylonitrile (PAN) electrospun nanofibers. The results show that the surface morphology and chemical composition of the PAN/ZIF-67 hybrid nanofiber filters gradually changed with the reaction time. For PAN/ZIF-67 hybrid nanofiber filters with relatively low initial PM0.3-0.4 filtration efficiency, a reaction time of only 5 min was sufficient for the synthesis of the amount of ZIF-67 that maximized the PM0.3-0.4 filtration efficiency. However, for thick filters with high original PM0.3-0.4 filtration efficiency (>90%), the integration of ZIF-67 was not necessary, because the efficiency enhancement would not be significant. In addition, the enhancement of filtration efficiency for ultrafine particles was positively correlated with the amount of incorporated ZIF-67. In summary, this study shortened the synthesis time of the in situ incorporation of MOFs into electrospun nanofiber filters from more than 10 h (reported in the literature) to only 5 min.

13.
Indoor Air ; 32(5): e13038, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622720

RESUMEN

Exposure to volatile organic compounds (VOCs) indoors is thought to be associated with several adverse health effects. However, we still lack concentration-response (C-R) relationships between VOC levels in civil buildings and various health outcomes. For this paper, we conducted a systematic review and meta-analysis of observational studies to summarize related associations and C-R relationships. Four databases were searched to collect all relevant studies published between January 1980 and December 2017. A total of 39 studies were identified in the systematic review, and 32 of these were included in the meta-analysis. We found that the pooled relative risk (RR) for leukemia was 1.03 (95% CI: 1.01-1.05) per 1 µg/m3 increase of benzene and 1.25 (95%CI: 1.14-1.37) per 0.1 µg/m3 increase of butadiene. The pooled RRs for asthma were 1.08 (95% CI: 1.02-1.14), 1.02 (95% CI: 1.00-1.04), and 1.04 (95% CI: 1.02-1.06) per 1 µg/m3 increase of benzene, toluene, and p-dichlorobenzene, respectively. The pooled RR for low birth weight was 1.12 (95% CI: 1.05-1.19) per 1 µg/m3 increase of benzene. Our findings provide robust evidence for associations between benzene and leukemia, asthma, and low birth weight, as well as for health effects of some other VOCs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Asma , Leucemia , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Benceno/análisis , Humanos , Leucemia/epidemiología , Leucemia/etiología , Estudios Observacionales como Asunto , Compuestos Orgánicos Volátiles/análisis
14.
Indoor Air ; 32(4): e13030, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35481931

RESUMEN

China's profoundly rapid modernization in the past two decades has resulted in dramatic changes in indoor environmental exposures. Among these changes, exposure to phthalates has attracted increasing attention. We aimed to characterize indoor phthalate exposure and to estimate the disease burden attributable to indoor phthalate pollution from 2000 to 2017 in China. We integrated the national exposure level of indoor phthalates from literature through systematic review and Monte Carlo simulation. Dose-response relationships between phthalate exposure and health outcomes were obtained by systematic review and meta-analysis. Based on existing models for assessing probabilities of causation and a comprehensive review of available data, we calculated the disability-adjusted life years (DALYs) among the general Chinese population resulting from exposure to indoor phthalate pollution. We found that DnBP, DiBP, and DEHP were the most abundant phthalates in indoor environments of residences, offices, and schools with medians of national dust phase concentration from 74.5 µg/g to 96.3 µg/g, 39.6 µg/g to 162.5 µg/g, 634.2 µg/g to 1,394.7 µg/g, respectively. The national equivalent exposure for children to phthalates in settled dust was higher than that of adults except for DiBP and DnOP. Dose-response relationships associated with DEP, DiBP, DnBP, BBzP, and DEHP exposures were established. Between 2000 and 2017, indoor phthalate exposure in China has led to 3.32 million DALYs per year, accounting for 0.90% of total DALYs across China. The annual DALY associated with indoor phthalate pollution in China was over 2000 people per million, which is about 2~3 times of the DALY loss due to secondhand smoke (SHS) in six European countries or the sum of the DALY loss caused by indoor radon and formaldehyde in American homes. Our study indicates a considerable socioeconomic impact of indoor phthalate exposure for a modernizing human society. This suggest the need for relevant national standard and actions to reduce indoor phthalate exposure.


Asunto(s)
Contaminación del Aire Interior , Dietilhexil Ftalato , Adulto , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Niño , China/epidemiología , Costo de Enfermedad , Dietilhexil Ftalato/análisis , Polvo/análisis , Humanos , Ácidos Ftálicos , Estados Unidos
15.
J Hazard Mater ; 427: 128190, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35007806

RESUMEN

In-situ thermally regenerated flexible adsorption films are superior for long-term purification of indoor low-concentration volatile organic compounds (VOCs). To further improve the adsorption kinetics of the films, the surface morphology of adsorption films was suggested in hierarchical channel structure. However, such structure is far from practical applications because of its complicated fabrication method and limited flexibility. In this study, we proposed a convenient and fast method named direct ink writing (DIW) based 3D printing to fabricate flexible adsorption films. Inks were prepared to have appropriate rheological properties and good printability. Three types of adsorption film (flat, straight finned, and trough-like finned) were constructed on flexible polyimide circuit substrates by DIW. We utilized the printed adsorption films for indoor level (1 ppm) formaldehyde removal. The trough-like finned film achieved the best performance among the three printed films, showing a 275% longer penetration time and 252% larger effective adsorption capacity than the flat film. By conducting a 7-cycle adsorption-desorption experiment (more than 12 h), we verified that the films' adsorption performance could effectively recover via in-situ heating. This work could dance around the complicated coating process, increase the structural flexibility and reduce the adsorbent interfacial modification cost.

16.
J Hazard Mater ; 424(Pt A): 127326, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34597933

RESUMEN

Organic films were widely found on indoor impermeable surfaces exposed to gaseous organic compounds, but few studies have addressed the film growth details on different indoor substrates. In this study, we observed the topography evolution of phthalic acid ester (PAE) organic films on three impermeable substrates: polished glass (G-P), mirror-polished stainless steel (SS-M) and drawn stainless steel (SS-D). PAE organic films were preferentially formed upon the flat surface with sparse inherent nano-peaks of substrate G-P and in valleys of substrate SS-M and SS-D. Surface uniformity of substrates and viscosity of PAE molecules were inferred as critical parameters determining the surface average adhesion forces. We obtained the partition coefficients of DEP, DnBP, BBP and DEHP on substrate G-P, SS-M and SS-D by fitting the initial monolayer adsorption process. Organic films continuously grew instead of reaching adsorption equilibrium after long-term PAE exposure, indicating that multilayer adsorption may occur. The organic film growth rates in saturated gas-phase PAE concentrations were quantified as about one-tenth of the results in previous studies where substrates were simultaneously exposed to multiple pollutants. To sum up, the results outline PAE adsorption details on impermeable materials and provide a reference for better estimation on PAE exposure assessment.


Asunto(s)
Contaminación del Aire Interior , Ácidos Ftálicos , Adsorción , Contaminación del Aire Interior/análisis , Ésteres/análisis , Gases , Compuestos Orgánicos , Ácidos Ftálicos/análisis
17.
Indoor Air ; 32(1): e12920, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432341

RESUMEN

After decades of development, the indoor environment in China has changed. A systematic review was conducted from peer-reviewed scientific papers with field test data of indoor radon in China from 2000 to 2020 for three types of buildings. The mean concentrations of indoor radon for dwellings, school buildings, and office buildings are 54.6, 56.1, and 54.9 Bq/m3 . The indoor radon concentration was related to seasons, climate regions, ventilation, decoration, and other factors such as soil and outdoor air. Colder seasons, especially in severe colder areas of China, newer decorated buildings, closed windows, and doors were all associated with higher indoor radon concentrations. Variables like climate region and ventilation showed statistical significance in the correlation analysis. Regarding the increasing trend of indoor radon concentration in China during the last two decades, further study of indoor radon is necessary especially for school buildings and office buildings, and will help access its environmental burden of disease in China more accurately.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , China , Vivienda , Radón/análisis , Instituciones Académicas
18.
Environ Pollut ; 289: 117945, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426189

RESUMEN

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely studied for their mutagenic and carcinogenic effects. This study aims to investigate whether exposure to nitro-PAHs is associated with biomarkers of carbohydrate metabolism, an underlying risk factor for metabolic disorder. Early morning urine and blood samples were longitudinally collected two times with a four-week interval from 43 healthy adults. Five urinary amino-PAHs (1-aminonaphthalene, 2-aminonaphthalene, 9-aminophenanthrene, 2-aminofluorene, and 1-aminopyrene) were measured as biomarkers of nitro-PAH exposures. We measured plasma concentrations of glucose and six amino acids that can regulate insulin secretion, including aspartate (Asp), glutamate (Glu), glutamine (Gln), alanine (Ala), Arginine (Arg), and ornithine (Orn). We found that increasing concentrations of 9-aminophenanthrene were significantly associated with increasing glucose levels and with decreasing Asp, Glu, Ala, and Orn levels. We estimated that 26.4 %-43.8 % of the 9-aminophenanthrene-associated increase in glucose level was mediated by Asp, Glu, and Orn. These results suggest that exposure to certain nitro-PAHs affects glucose homeostasis, partly resulting from the depletion of insulin-stimulating amino acids (Asp, Glu, and Orn).


Asunto(s)
Glucemia , Hidrocarburos Policíclicos Aromáticos , Adulto , Aminoácidos , Biomarcadores , Humanos , Nitratos , Óxidos de Nitrógeno
19.
Small ; 17(33): e2102051, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309205

RESUMEN

Airborne particulate matters (PM) pose serious health threats to the population, and efficient filtration is needed for indoor and vehicular environments. However, there is an intrinsic conflict between filtration efficiency, air resistance, and service life. In this study, a two-stage electrostatically assisted air (EAA) filtration device is designed and the efficiency-air resistance-filter life envelope is significantly improved by a thin coating of polydopamine (PDA) on the polyethylene terephthalate (PET) coarse filter by in situ dopamine polymerization. The 8 mm thick EAA PDA-140@PET filter has a high filtration efficiency of 99.48% for 0.3 µm particles, low air resistance of 9.5 Pa at a filtration velocity of 0.4 m s-1 , and steady performance up to 30 d. Compared with the bare PET filter, the penetration rate for 0.3 µm particles is lowered by 20×. The coated PDA is of submicron thickness, 10-3  × the gap distance between filter fibers, so low air resistance could be maintained. The filter shows steadily high filtration efficiency and an acceptable increase of air resistance and holds nearly as many particles as its own weight in a 30 day long-term test. The working mechanism of the EAA coarse filter is investigated, and the materials design criteria are proposed.


Asunto(s)
Material Particulado , Tereftalatos Polietilenos , Filtración , Indoles , Polímeros
20.
PLoS One ; 16(7): e0241734, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34310599

RESUMEN

Personal protective equipment (PPE) is crucially important to the safety of both patients and medical personnel, particularly in the event of an infectious pandemic. As the incidence of Coronavirus Disease 2019 (COVID-19) increases exponentially in the United States and many parts of the world, healthcare provider demand for these necessities is currently outpacing supply. In the midst of the current pandemic, there has been a concerted effort to identify viable ways to conserve PPE, including decontamination after use. In this study, we outline a procedure by which PPE may be decontaminated using ultraviolet (UV) radiation in biosafety cabinets (BSCs), a common element of many academic, public health, and hospital laboratories. According to the literature, effective decontamination of N95 respirator masks or surgical masks requires UV-C doses of greater than 1 Jcm-2, which was achieved after 4.3 hours per side when placing the N95 at the bottom of the BSCs tested in this study. We then demonstrated complete inactivation of the human coronavirus NL63 on N95 mask material after 15 minutes of UV-C exposure at 61 cm (232 µWcm-2). Our results provide support to healthcare organizations looking for methods to extend their reserves of PPE.


Asunto(s)
COVID-19/prevención & control , Contención de Riesgos Biológicos/métodos , Descontaminación/métodos , Pandemias , SARS-CoV-2/efectos de la radiación , Rayos Ultravioleta , COVID-19/transmisión , COVID-19/virología , Relación Dosis-Respuesta en la Radiación , Equipo Reutilizado , Personal de Salud/educación , Humanos , Laboratorios/organización & administración , Máscaras/virología , Respiradores N95/virología , Radiometría/estadística & datos numéricos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...