Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Nat Commun ; 15(1): 3681, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693155

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Pharmacogenetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Child , Drug Resistance, Neoplasm/genetics , Genetic Variation , Cell Line, Tumor , Vincristine/therapeutic use , Vincristine/pharmacology , Polymorphism, Single Nucleotide , Alleles , Chromatin/metabolism , Chromatin/genetics , Trans-Activators/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic/drug effects
3.
Nature ; 628(8007): 442-449, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538798

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Multiprotein Complexes , Mutation , Neoplasms , SMARCB1 Protein , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , CRISPR-Cas Systems , Gene Editing , Neoplasms/genetics , Neoplasms/metabolism , SMARCB1 Protein/deficiency , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Proteolysis , Ubiquitin/metabolism
4.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38116118

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

6.
bioRxiv ; 2023 Jul 13.
Article En | MEDLINE | ID: mdl-36824825

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.

7.
medRxiv ; 2023 Feb 11.
Article En | MEDLINE | ID: mdl-36798219

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.

8.
bioRxiv ; 2023 May 13.
Article En | MEDLINE | ID: mdl-36711662

Glucocorticoids (GCs; i.e., steroids) are important chemotherapeutic agents in the treatment of B-cell precursor acute lymphoblastic leukemia (B-ALL) and de novo GC resistance predicts relapse and poor clinical outcome in patients. Glucocorticoids induce B-ALL cell apoptosis through activation of glucocorticoid receptor (GR), a ligand-induced nuclear receptor transcription factor (TF). We previously identified disruptions to glucocorticoid receptor (GR)-bound cis -regulatory elements controlling TLE1 expression in GC-resistant primary B-ALL cells from patients. TLE1 is a GC-response gene up-regulated by steroids and functions as a canonical Wnt signaling repressor. To better understand the mechanistic relationship between GC signaling and canonical Wnt signaling, we performed diverse functional analyses that identified extensive crosstalk and mutual antagonism between these two signaling pathways in B-ALL. We determined that crosstalk and antagonism was driven by the binding of GR and the canonical Wnt signaling TFs LEF1 and TCF7L2 to overlapping sets of cis -regulatory elements associated with genes impacting cell death and cell proliferation, and was further accompanied by overlapping and opposing transcriptional programs. Our data additionally suggest that cis -regulatory disruptions at TLE1 are linked to GC resistance through a dampening of the GC response and GC-mediated apoptosis via enhanced canonical Wnt signaling. As a result of the extensive genomic and gene regulatory connectivity between these two signaling pathways, our data supports the importance of canonical Wnt signaling in mediating GC resistance in B-ALL.

9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article En | MEDLINE | ID: mdl-36077068

Cytochrome P4501B1 (CYP1B1) is elevated in breast cancer. Studies indicate a relationship between CYP1B1 and aggressive cancer phenotypes. Here, we report on in vitro studies in triple-negative breast cancer cell lines, where knockdown (KD) of CYP1B1 was used to determine the influence of its expression on invasive cell phenotypes. CYP1B1 KD in MDA-MB-231 cells resulted in the loss of mesenchymal morphology, altered expression of epithelial-mesenchymal genes, and increased claudin (CLDN) RNA and protein. CYP1B1 KD cells had increased cell-to-cell contact and paracellular barrier function, a reduced rate of cell proliferation, abrogation of migratory and invasive activity, and diminished spheroid formation. Analysis of clinical breast cancer tumor samples revealed an association between tumors exhibiting higher CYP1B1 RNA levels and diminished overall and disease-free survival. Tumor expression of CYP1B1 was inversely associated with CLDN7 expression, and CYP1B1HI/CLDN7LOW identified patients with lower median survival. Cells with CYP1B1 KD had an enhanced chemosensitivity to paclitaxel, 5-fluorouracil, and cisplatin. Our findings that CYP1B1 KD can increase chemosensitivity points to therapeutic targeting of this enzyme. CYP1B1 inhibitors in combination with chemotherapeutic drugs may provide a novel targeted and effective approach to adjuvant or neoadjuvant therapy against certain forms of highly metastatic breast cancer.


Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Claudins/genetics , Cytochrome P-450 CYP1B1/genetics , Female , Humans , Phenotype , RNA , Triple Negative Breast Neoplasms/pathology
10.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Article En | MEDLINE | ID: mdl-35537449

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Enhancer of Zeste Homolog 2 Protein , F-Box Proteins , Histone-Lysine N-Methyltransferase , Jumonji Domain-Containing Histone Demethylases , Polycomb-Group Proteins , SMARCB1 Protein , Chromatin/genetics , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics , Tumor Cells, Cultured/metabolism
11.
Cell Rep ; 26(13): 3684-3697.e7, 2019 03 26.
Article En | MEDLINE | ID: mdl-30917321

O-GalNAc glycosylation is initiated in the Golgi by glycosyltransferases called GALNTs. Proteomic screens identified >600 O-GalNAc-modified proteins, but the biological relevance of these modifications has been difficult to determine. We have discovered a conserved function for GALNT3 in trophoblast stem (TS) cells, blastocyst trophectoderm, and human mammary epithelial cells (HMECs). The loss of GALNT3 expression in these systems reduces O-GalNAc glycosylation and induces epithelial-mesenchymal transition. Furthermore, Galnt3 expression is reduced in aggressive, mesenchymal claudin-low breast cancer cells. We show that GALNT3 expression controls the O-GalNAc glycosylation of multiple proteins, including E-cadherin in both TS cells and HMECs. The loss of GALNT3 results in the intracellular retention of E-cadherin in the Golgi. Significantly, re-expression of GALNT3 in TS cells increases O-GalNAc glycosylation and restores the epithelial state. Together, these data demonstrate the critical biological role of GALNT3 O-GalNAc glycosylation to promote the epithelial phenotype in TS cells, blastocyst trophectoderm, and HMECs.


Cell Differentiation , Epithelial Cells/metabolism , Human Embryonic Stem Cells/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Protein Processing, Post-Translational , Trophoblasts/cytology , Animals , Cadherins/metabolism , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition , Female , Glycosylation , HEK293 Cells , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Human Embryonic Stem Cells/cytology , Humans , Mice , N-Acetylgalactosaminyltransferases/genetics , Protein Transport , Trophoblasts/metabolism , Polypeptide N-acetylgalactosaminyltransferase
12.
J Nat Sci ; 3(9)2017 Sep.
Article En | MEDLINE | ID: mdl-28936481

Large-scale epigenetic changes take place when epithelial cells with cell-cell adhesion and apical-basal polarity transition into invasive, individual, mesenchymal cells through a process known as epithelial to mesenchymal transition (EMT). Importantly, cancers with stem cell properties disseminate and form distant metastases by reactivating the developmental EMT program. Recent studies have demonstrated that the epigenetic histone modification, H2BK5 acetylation (H2BK5Ac), is important in the regulation of EMT. For example, in trophoblast stem (TS) cells, H2BK5Ac promotes the expression of genes important to the maintenance of an epithelial phenotype. This finding led to the discovery that TS cells and stem-like claudin-low breast cancer cells share similar H2BK5Ac-regulated gene expression, linking developmental and cancer cell EMT. An improved understanding of the role of H2BK5Ac in developmental EMT and stemness will further our understanding of epigenetics in EMT-related pathologies. Here, we examine the binders and regulators of H2BK5Ac and discuss the roles of H2BK5Ac in stemness and EMT.

13.
Cell Rep ; 18(10): 2387-2400, 2017 03 07.
Article En | MEDLINE | ID: mdl-28273454

The first epithelial-to-mesenchymal transition (EMT) occurs in trophoblast stem (TS) cells during implantation. Inactivation of the serine/threonine kinase MAP3K4 in TS cells (TSKI4 cells) induces an intermediate state of EMT, where cells retain stemness, lose epithelial markers, and gain mesenchymal characteristics. Investigation of relationships among MAP3K4 activity, stemness, and EMT in TS cells may reveal key regulators of EMT. Here, we show that MAP3K4 activity controls EMT through the ubiquitination and degradation of HDAC6. Loss of MAP3K4 activity in TSKI4 cells results in elevated HDAC6 expression and the deacetylation of cytoplasmic and nuclear targets. In the nucleus, HDAC6 deacetylates the promoters of tight junction genes, promoting the dissolution of tight junctions. Importantly, HDAC6 knockdown in TSKI4 cells restores epithelial features, including cell-cell adhesion and barrier formation. These data define a role for HDAC6 in regulating gene expression during transitions between epithelial and mesenchymal phenotypes.


Chromatin/metabolism , Epithelial-Mesenchymal Transition , Histone Deacetylase 6/metabolism , Stem Cells/cytology , Trophoblasts/metabolism , Acetylation , Animals , Cell Differentiation , Cell Nucleus/metabolism , Epithelial-Mesenchymal Transition/genetics , MAP Kinase Kinase Kinase 4/metabolism , Mice , Phenotype , Promoter Regions, Genetic/genetics , Protein Binding , Proteolysis , Tight Junction Proteins/metabolism , Ubiquitination
...