Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Phys Rev Lett ; 130(8): 086704, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898116

RESUMEN

We report the manifestation of field-induced Berezinskii-Kosterlitz-Thouless (BKT) correlations in the weakly coupled spin-1/2 Heisenberg layers of the molecular-based bulk material [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2}. At zero field, a transition to long-range order occurs at 1.38 K, caused by a weak intrinsic easy-plane anisotropy and an interlayer exchange of J^{'}/k_{B}≈1 mK. Because of the moderate intralayer exchange coupling of J/k_{B}=6.8 K, the application of laboratory magnetic fields induces a substantial XY anisotropy of the spin correlations. Crucially, this provides a significant BKT regime, as the tiny interlayer exchange J^{'} only induces 3D correlations upon close approach to the BKT transition with its exponential growth in the spin-correlation length. We employ nuclear magnetic resonance measurements to probe the spin correlations that determine the critical temperatures of the BKT transition as well as that of the onset of long-range order. Further, we perform stochastic series expansion quantum Monte Carlo simulations based on the experimentally determined model parameters. Finite-size scaling of the in-plane spin stiffness yields excellent agreement of critical temperatures between theory and experiment, providing clear evidence that the nonmonotonic magnetic phase diagram of [Cu(pz)_{2}(2-HOpy)_{2}](PF_{6})_{2} is determined by the field-tuned XY anisotropy and the concomitant BKT physics.

2.
J Phys Condens Matter ; 35(7)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36137523

RESUMEN

We present a theory of optimal topological textures in nonlinear sigma-models with degrees of freedom living in the GrassmannianGr(M,N)manifold. These textures describe skyrmion lattices ofN-component fermions in a quantising magnetic field, relevant to the physics of graphene, bilayer and other multicomponent quantum Hall systems near integer filling factorsν > 1. We derive analytically the optimality condition, minimizing topological charge density fluctuations, for a general Grassmannian sigma modelGr(M,N)on a sphere and a torus, together with counting arguments which show that for any filling factor and number of components there is a critical value of topological chargedcabove which there are no optimal textures. Belowdca solution of the optimality condition on a torus is unique, while in the case of a sphere one has, in general, a continuum of solutions corresponding to new non-Goldstone zero modes, whose degeneracy is not lifted (via a order from disorder mechanism) by any fermion interactions depending only on the distance on a sphere. We supplement our general theoretical considerations with the exact analytical results for the case ofGr(2,4), appropriate for recent experiments in graphene.

3.
Phys Rev Lett ; 128(9): 097201, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302826

RESUMEN

We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering, showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer ℓ. We find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have nontrivial Berry phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a screw-axis symmetry, and introduce a topological invariant characterizing its presence and effect on the scattering intensity. Together, these results indicate a highly nontrivial topology, which is generic to hexagonal close packed ferromagnets. We discuss potential implications for other such systems.

4.
Phys Rev Lett ; 127(12): 127201, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597102

RESUMEN

We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which quenched disorder leads to random-singlet phenomenology of emergent magnetic moments. More precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility χ(T) of an exactly solvable S=1/2 model on the decorated honeycomb lattice with vacancy and/or bond disorder, leading to χ(T)=C/T+DT^{α(T)-1}, where α(T)→0 slowly as the temperature T→0. The first term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising from isolated free spins. The second term, common to both vacancy and bond disorder [with different α(T) in the two cases] is the response of a random singlet phase, familiar from random antiferromagnetic spin chains and the analogous regime in phosphorus-doped silicon (Si:P).

5.
World J Biol Psychiatry ; 22(8): 561-628, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33977870

RESUMEN

Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.


Asunto(s)
Farmacogenética , Psiquiatría , Antidepresivos/farmacología , Monitoreo de Drogas , Humanos , Neuroimagen
6.
Sci Adv ; 6(6): eaaz0611, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128385

RESUMEN

A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an "intertwined" excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.

7.
Phys Rev Lett ; 122(4): 040606, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768332

RESUMEN

We consider spinless fermions on a finite one-dimensional lattice, interacting via nearest-neighbor repulsion and subject to a strong electric field. In the noninteracting case, due to Wannier-Stark localization, the single-particle wave functions are exponentially localized even though the model has no quenched disorder. We show that this system remains localized in the presence of interactions and exhibits physics analogous to models of conventional many-body localization (MBL). In particular, the entanglement entropy grows logarithmically with time after a quench, albeit with a slightly different functional form from the MBL case, and the level statistics of the many-body energy spectrum are Poissonian. We moreover predict that a quench experiment starting from a charge-density wave state would show results similar to those of Schreiber et al. [Science 349, 842 (2015)SCIEAS0036-807510.1126/science.aaa7432].

8.
Phys Rev Lett ; 119(17): 176601, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219477

RESUMEN

We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focusing on the behavior of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area and volume-law entanglement, being characteristic of the quantum disentangled liquid. This behavior appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Upon adding density interactions between the fermions, we identify an exact mapping to an XXZ spin chain in a random binary magnetic field, thereby establishing the existence of many-body localization with its logarithmic entanglement growth in a fully disorder-free system.

9.
Phys Rev Lett ; 118(26): 266601, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28707931

RESUMEN

The venerable phenomena of Anderson localization, along with the much more recent many-body localization, both depend crucially on the presence of disorder. The latter enters either in the form of quenched disorder in the parameters of the Hamiltonian, or through a special choice of a disordered initial state. Here, we present a model with localization arising in a very simple, completely translationally invariant quantum model, with only local interactions between spins and fermions. By identifying an extensive set of conserved quantities, we show that the system generates purely dynamically its own disorder, which gives rise to localization of fermionic degrees of freedom. Our work gives an answer to a decades old question whether quenched disorder is a necessary condition for localization. It also offers new insights into the physics of many-body localization, lattice gauge theories, and quantum disentangled liquids.

10.
Phys Rev Lett ; 118(4): 047201, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28186783

RESUMEN

Quantum spin systems are by now known to exhibit a large number of different classes of spin liquid phases. By contrast, for classical Heisenberg models, only one kind of fractionalized spin liquid phase, the so-called Coulomb or U(1) spin liquid, has until recently been identified: This exhibits algebraic spin correlations and impurity moments, "orphan spins," whose size is a fraction of that of the underlying microscopic degrees of freedom. Here, we present two Heisenberg models exhibiting fractionalization in combination with exponentially decaying correlations. These can be thought of as a classical continuous spin version of a Z_{2} spin liquid. Our work suggests a systematic search and classification of classical spin liquids as a worthwhile endeavor.

11.
Phys Rev Lett ; 117(16): 167201, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27792369

RESUMEN

We show that the honeycomb Heisenberg antiferromagnet with J_{1}/2=J_{2}=J_{3}, where J_{1}, J_{2}, and J_{3} are first-, second-, and third-neighbor couplings, respectively, forms a classical spin liquid with pinch-point singularities in the structure factor at the Brillouin zone corners. Upon dilution with nonmagnetic ions, fractionalized degrees of freedom carrying 1/3 of the free moment emerge. Their effective description in the limit of low temperature is that of spins randomly located on a triangular lattice, with a frustrated sublattice-sensitive interaction of long-ranged logarithmic form. The XY version of this magnet exhibits nematic thermal order by disorder. This comes with a clear experimental diagnostic in neutron scattering, which turns out to apply also to the case of the celebrated planar order by disorder of the kagome Heisenberg antiferromagnet.

12.
Phys Rev E ; 94(3-1): 032124, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27739734

RESUMEN

We study spin glass behavior in a random Ising Coulomb antiferromagnet in two and three dimensions using Monte Carlo simulations. In two dimensions, we find a transition at zero temperature with critical exponents consistent with those of the Edwards-Anderson model, though with large uncertainties. In three dimensions, evidence for a finite-temperature transition, as occurs in the Edwards-Anderson model, is rather weak. This may indicate that the sizes are too small to probe the asymptotic critical behavior, or possibly that the universality class is different from that of the Edwards-Anderson model and has a lower critical dimension equal to three.

13.
Philos Trans A Math Phys Eng Sci ; 374(2075)2016 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-27458263

RESUMEN

The formulation of a complete theory of classical electromagnetism by Maxwell is one of the milestones of science. The capacity of many-body systems to provide emergent mini-universes with vacua quite distinct from the one we inhabit was only recognized much later. Here, we provide an account of how simple systems of localized spins manage to emulate Maxwell electromagnetism in their low-energy behaviour. They are much less constrained by symmetry considerations than the relativistically invariant electromagnetic vacuum, as their substrate provides a non-relativistic background with even translational invariance broken. They can exhibit rich behaviour not encountered in conventional electromagnetism. This includes the existence of magnetic monopole excitations arising from fractionalization of magnetic dipoles; as well as the capacity of disorder, by generating defects on the lattice scale, to produce novel physics, as exemplified by topological spin glassiness or random Coulomb magnetism.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.

14.
Nat Mater ; 15(7): 733-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27043779

RESUMEN

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.


Asunto(s)
Campos Magnéticos , Imanes , Modelos Químicos , Teoría Cuántica , Soluciones/química , Marcadores de Spin , Frío , Simulación por Computador , Dosis de Radiación
15.
Phys Rev Lett ; 115(11): 116803, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406848

RESUMEN

We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall conductance with |σ_{xy}|=2, (ii) two counterpropagating gapless edge modes. Our simple model is an example of a novel class of systems that can stabilize SPT phases protected by a continuous symmetry on lattices and opens up new possibilities for the experimental realization of these exotic phases.

16.
Phys Rev Lett ; 115(3): 037201, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230822

RESUMEN

The Wien effect is a model process for field-induced charge creation. Here it is derived for a nonelectrical system: the spin ice "magnetolyte"-a unique system showing perfect charge symmetry. An entropic reaction field, analogous to the Jaccard field in ice, opposes direct current, but a frequency window exists in which the Wien effect for magnetolyte and electrolyte are indistinguishable. The universal enhancement of monopole density speeds up the magnetization dynamics, which manifests in the nonlinear, nonequilibrium ac susceptibility. This is a rare instance where such effects may be calculated, providing new insights for electrolytes. Experimental predictions are made for Dy2Ti2O7 spin ice.

17.
Phys Rev Lett ; 114(24): 247207, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26197007

RESUMEN

It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

18.
Phys Rev Lett ; 114(1): 016806, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615496

RESUMEN

We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface states whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending on their quasimomentum. Remarkably, these persist independently of the existence of Weyl points in the bulk. Considering interacting electrons in slabs of finite thickness, we find a plethora of known fractional Chern insulating phases, to which we add the discovery of a new higher Chern number state which is likely a generalization of the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-dimensional limit, we argue for the absence of gapped states of the flat surface band due to a topologically protected coupling of the surface to gapless states in the bulk. We comment on generalizations as well as experimental perspectives in thin slabs of pyrochlore iridates.

19.
Phys Rev Lett ; 115(26): 267209, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765025

RESUMEN

While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

20.
Phys Rev Lett ; 113(18): 187201, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25396391

RESUMEN

We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...