Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672515

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Inflammation , Humans , DNA, Mitochondrial/genetics , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Middle Aged , Inflammation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Aged , Vascular Remodeling/genetics , Case-Control Studies
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37372951

Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-ß-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Interleukin-10 , Interleukin-17 , Interleukin-18/genetics , DNA, Mitochondrial/genetics , Albuminuria/urine , Inflammation/genetics , Mitochondria/genetics , Biomarkers/urine
3.
Int J Med Sci ; 18(10): 2093-2101, 2021.
Article En | MEDLINE | ID: mdl-33859515

Aims: Long noncoding RNAs (lncRNAs) play key roles in the pathophysiology of DKD involving actions of microRNAs (miRNAs). The aims of the study were to establish the involvement of selected lncRNAs in the epigenetic mechanisms of podocyte damage and tubular injury in DKD of type 2 diabetes mellitus (DM) patients in relation to a particular miRNAs profile. Methods: A total of 136 patients with type 2 DM and 25 healthy subjects were assessed in a cross-sectional study concerning urinary albumin: creatinine ratio (UACR), eGFR, biomarkers of podocyte damage (synaptopodin, podocalyxin) and of proximal tubule (PT) dysfunction (Kidney injury molecule-1-KIM-1, N-acetyl-D-glucosaminidase-NAG), urinary lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), nuclear-enriched abundant transcript 1 (NEAT1), myocardial infarction-associated transcript (MIAT), taurine-upregulated gene 1 (TUG1), urinary miRNA21, 124, 93, 29a. Results: Multivariable regression analysis showed that urinary lncMALAT1 correlated directly with urinary synaptopodin, podocalyxin, KIM-1, NAG, miRNA21, 124, UACR, and negatively with eGFR, miRNA93, 29a (p<0.0001; R2=0.727); urinary lncNEAT1 correlated directly with synaptopodin, KIM-1, NAG, miRNA21, 124, and negatively with eGFR, miRNA93, 29a (p<0.0001; R2=0.702); urinary lncMIAT correlated directly with miRNA93 and 29a, eGFR (p<0.0001; R2=0.671) and negatively with synaptopodin, KIM-1, NAG, UACR, miRNA21, 124 (p<0.0001; R2=0.654); urinary lncTUG1 correlated directly with eGFR, miRNA93, 29a, and negatively with synaptopodin, podocalyxin, NAG, miRNA21, 124 (p<0.0001; R2=0.748). Conclusions: In patients with type 2 DM lncRNAs exert either deleterious or protective functions within glomeruli and PT. LncRNAs may contribute to DKD through modulating miRNAs expression and activities. This observation holds true independently of albuminuria and DKD stage.


Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/genetics , Kidney Tubules, Proximal/physiopathology , Podocytes/physiology , RNA, Long Noncoding/metabolism , Adult , Aged , Biomarkers/metabolism , Biomarkers/urine , Cross-Sectional Studies , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/urine , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/urine , Female , Gene Expression Regulation/physiology , Humans , Male , MicroRNAs/metabolism , Middle Aged , Protective Factors , RNA, Long Noncoding/urine , Risk Factors , Young Adult
4.
Biomark Med ; 14(16): 1521-1536, 2020 11.
Article En | MEDLINE | ID: mdl-33090017

Aim: An advanced proteomics platform for protein biomarker discovery in diabetic chronic kidney disease (DKD) was developed, validated and implemented. Materials & methods: Three Type 2 diabetes mellitus patients and three control subjects were enrolled. Urinary peptides were extracted, samples were analyzed on a hybrid LTQ-Orbitrap Velos Pro instrument. Raw data were searched using the SEQUEST algorithm and integrated into Proteome Discoverer platform. Results & discussion: Unique peptide sequences, resulted sequence coverage, scoring of peptide spectrum matches were reported to albuminuria and databases. Five proteins that can be associated with early DKD were found: apolipoprotein AI, neutrophil gelatinase-associated lipocalin, cytidine deaminase, S100-A8 and hemoglobin subunit delta. Conclusion: Urinary proteome analysis could be used to evaluate mechanisms of pathogenesis of DKD.


Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/diagnosis , Aged , Albuminuria/diagnosis , Albuminuria/urine , Biomarkers/urine , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/urine , Diabetic Nephropathies/urine , Female , Humans , Kidney Diseases/diagnosis , Kidney Diseases/urine , Kidney Function Tests , Male , Middle Aged , Peptides , Pilot Projects , Proteome/analysis , Proteomics/methods
...