Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetics ; 199(3): 761-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25567989

RESUMEN

The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2ß/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Femenino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Fosforilación , Proteínas Represoras/genética , Sumoilación , Transactivadores/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Vulva/fisiología
2.
Proc Natl Acad Sci U S A ; 109(36): 14381-6, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908299

RESUMEN

Tyr142, the C-terminal amino acid of histone variant H2A.X is phosphorylated by WSTF (Williams-Beuren syndrome transcription factor), a component of the WICH complex (WSTF-ISWI chromatin-remodeling complex), under basal conditions in the cell. In response to DNA double-strand breaks (DSBs), H2A.X is instantaneously phosphorylated at Ser139 by the kinases ATM and ATR and is progressively dephosphorylated at Tyr142 by the Eya1 and Eya3 tyrosine phosphatases, resulting in a temporal switch from a postulated diphosphorylated (pSer139, pTyr142) to monophosphorylated (pSer139) H2A.X state. How mediator proteins interpret these two signals remains a question of fundamental interest. We provide structural, biochemical, and cellular evidence that Microcephalin (MCPH1), an early DNA damage response protein, can read both modifications via its tandem BRCA1 C-terminal (BRCT) domains, thereby emerging as a versatile sensor of H2A.X phosphorylation marks. We show that MCPH1 recruitment to sites of DNA damage is linked to both states of H2A.X.


Asunto(s)
Reparación del ADN/fisiología , Histonas/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fosfoserina/metabolismo , Fosfotirosina/metabolismo , Calorimetría , Proteínas de Ciclo Celular , Clonación Molecular , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Daño del ADN/fisiología , Escherichia coli , Vectores Genéticos/genética , Humanos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética
3.
Mol Cell ; 45(3): 273-5, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325348

RESUMEN

In this issue of Molecular Cell, Yata et al. (2012) show that the mitotic kinase and cell-cycle regulator Plk1 can directly stimulate the DNA repair process, providing a potential mechanism of crosstalk between DNA repair and cell-cycle signaling.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Humanos , Quinasa Tipo Polo 1
4.
DNA Repair (Amst) ; 8(9): 1009-17, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19481982

RESUMEN

The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phosphorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G(2)/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.


Asunto(s)
Proteínas 14-3-3/metabolismo , Daño del ADN , Estructura Terciaria de Proteína , Animales , Ciclo Celular/efectos de la radiación , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Humanos , Radiación Ionizante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA