Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
ACS Omega ; 9(18): 20101-20118, 2024 May 07.
Article En | MEDLINE | ID: mdl-38737082

In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV-visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 µg/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.

2.
PLoS One ; 19(4): e0297764, 2024.
Article En | MEDLINE | ID: mdl-38598493

The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 µg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 µg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 µg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 µg/ml), while cultures exposed to 200 µg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 µg/ml). Interestingly, exposure to 400 µg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 µg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.


Apocynaceae , Nanoparticles , Selenium , Antioxidants/metabolism , Selenium/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/metabolism
3.
Front Plant Sci ; 14: 1253193, 2023.
Article En | MEDLINE | ID: mdl-37810387

Introduction: Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods: Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion: Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.

4.
Front Endocrinol (Lausanne) ; 13: 1029942, 2022.
Article En | MEDLINE | ID: mdl-36601006

Caralluma tuberculata, a medicinal and edible plant of the genus Caralluma, belongs to the family Asclepiadaceae. Traditionally, its succulent stems are used as folk medicine for life-threatening diabetes mellitus (DM) disease. Its antidiabetic potential is ascribed to the presence of various secondary metabolites (e.g., pregnane glycosides, flavone glycosides, megastigmane glycosides, polyphenols, ferulic acid, quercetin, and bitter principles, among others) that act as effective and safe antidiabetic agents. The mechanisms of these bioactive secondary metabolites in C. tuberculata herbal medicine include lowering the blood glucose level, stimulating B cells of the pancreas to release more insulin, enhancing the sensitivity of the insulin receptor, inhibiting the action of glucagon and the hydrolysis of glycogen, and increasing the use of glucose in tissues and organ. However, overexploitation, alterations in natural environmental conditions, lower seed viability, and slow growth rate are responsible for the extinction of species from natural habitats, then becoming critically endangered species according to the International Union for Conservation of Nature Red List categories. Therefore, its limited availability does not meet the higher worldwide market demand of C. tuberculata as an antidiabetic drug. Thus, for its conservation and sustainable utilization, researchers across the globe are working on devising strategies to conserve and improve biomass along with the secondary metabolite profiles of C. tuberculata using in vitro approaches. The current review describes the recent progress on antidiabetic phytoconstituents, their cellular mechanisms, and their subsequent clinical outcomes in the drug discovery management of DM. Moreover, in vitro methods such as callus culture, micropropagation, and nano-elicitation strategies for conserving and producing bioactive secondary metabolites have been concisely reviewed and discussed.


Apocynaceae , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Glycosides , Plant Extracts/pharmacology , Insulin
5.
Artif Cells Nanomed Biotechnol ; 49(1): 523-535, 2021 Dec.
Article En | MEDLINE | ID: mdl-34187267

Silybum marianum L. commonly known as milk thistle is a medicinally potent plant with a multitude of pharmacological applications. The present investigations demonstrated the effects of Zinc Oxide nanoparticles (ZnO NPs) on callus growth and biosynthesis of silymarin in milk thistle under various light conditions. The callus cultures developed on Murashige and Skoog (MS) basal media containing ZnO NPs (0.15 mg/L), under the dark condition maintained for two weeks, followed by transference into normal light produced the maximum callus fresh weight (2294 mg/L FW). Further, the metabolite profiling revealed that ZnO NPs significantly augmented the production of silymarin and upregulated the antioxidant system in the callus cultures. Maximum TPC (total phenolic content: 37 ± 0.20 mg/g DW), TFC (total flavonoid content: 8.9 ± 0.023), DPPH antioxidant activity (91.5 ± 1.75%), Superoxide dismutase activity (SOD: 4.1 ± 0.045 nM/min/mg FW) and the highest silymarin content (14.6 ± 0.023 mg/g DW) were recorded in the callus cultures developed on MS media supplemented with solitary ZnO NPs (0.15 mg/L). While the callus culture evolved in presence of only PGRs (2,4 D and BA: 2 mg/L, each) accumulated the lesser fresh weight (562 mg/L FW). A higher concentration of ZnO NPs (0.15 mg/L) enhanced the secondary metabolite accumulation and silymarin content in the callus of Silybum marianum. This is the first standardized protocol to be applied on the industrial level for the production of silymarin.


Silybum marianum
6.
Plants (Basel) ; 9(6)2020 Jun 09.
Article En | MEDLINE | ID: mdl-32526854

Linum usitatissimum commonly known as flax or linseed is an important medicinal plant, produces medicinally potent lignans, used in the treatment of several human diseases. Lignans limited production in the natural plants does not meet the increasing market demand. This study was conducted to establish an easy and rapid method for the in vitro micropropagation and production of potent lignans and antioxidant secondary metabolites in linseed. The results indicated that hypocotyl explants under the effects of thidiazuron (TDZ: 0.5 mg/L) + kinetin (Kn: 0.5 mg/L) in the basal growth media, resulted in the optimal shoot organogenesis parameters (shoot induction frequency: 86.87%, number of shoots: 6.3 ± 0.36 and shoots length: 6.5 ± 0.54 cm), in 4 weeks. Further, TDZ supplementation in the culture media efficiently activated the antioxidant system in the in vitro raised shoots, wherein maximum production of total phenolic content, TPC (34.33 ± 0.20 mg of GAE/g DW); total flavonoid content, TFC (8.99 ± 0.02 mg of QE/g DW); DPPH free radical scavenging activity (92.7 ± 1.32%); phenylalanine ammonia-lyase activity, PAL (8.99 ± 0.02 U/g FW); and superoxide dismutase expression, SOD (3.62 ± 0.01 nM/min/mg FW) were observed in the shoot cultures raised in presence of TDZ: 0.5 mg/L + Kn: 0.5 mg/L. Nonetheless, considerable levels of pharmacologically active lignans such as secoisolariciresinol (SECO: 23.13-37.10 mg/g DW), secoisolariciresinol diglucoside (SDG: 3.32-3.86 mg/g DW) and anhydrosecoisolariciresinol diglucoside (ANHSECO: 5.15-7.94 mg/g DW) were accumulated in the regenerated shoots. This protocol can be scaled up for the commercial production of linseed to meet the market demands for lignans.

7.
Artif Cells Nanomed Biotechnol ; 47(1): 715-724, 2019 Dec.
Article En | MEDLINE | ID: mdl-30856344

Elicited plant in vitro cultures are gaining more interest worldwide for their potential in the uniform production of industrially important secondary metabolites. In the present study, different ratios of silver nanoparticles (AgNPs) and plant growth regulators (PGRs) were supplemented to in vitro cultures for the sustainable production of biomass and antioxidant secondary metabolites through callus cultures of Caralluma tuberculata. Results indicated that various concentrations of AgNPs significantly affected the callus proliferation and substantially increased the callus biomass, when combined with PGRs in the MS (Murashige and Skoog) media. The highest fresh (0.78 g/l) and dry (0.051 g/l) biomass accumulation of callus was observed in the cultures raised in vitro at 60 µg/l AgNPs in combination with 0.5 mg/l 2,4-D plus 3.0 mg/l BA. Phytochemical analysis of the callus cultures showed higher production of phenolics (TPC:3.0 mg), flavonoids (TFC:1.8 mg), phenylalanine ammonialyase activity (PAL: 5.8 U/mg) and antioxidant activity (90%), respectively, in the callus cultures established on MS media in the presence of 90 ug/l AgNPs. Moreover, enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD: 4.8 U/mg), peroxidase (POD: 3.3 U/mg), catalase (CAT: 2.5 U/mg) and ascorbate peroxidase (APX: 1.9 U/mg) were detected at higher level (90 ug/l) of AgNPs tested alone for callus proliferation in the MS media. It may be concluded that the AgNPs can be effectively utilized for the enhancement of bioactive antioxidants in the callus cultures of C. tuberculata, a highly medicinal and threatened plant. This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites in C. tuberculata.


Apocynaceae/metabolism , Biomass , Metal Nanoparticles/chemistry , Secondary Metabolism , Silver/chemistry , Antioxidants/metabolism , Apocynaceae/cytology , Apocynaceae/growth & development , Flavonoids/metabolism , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Growth Regulators/chemistry , Tissue Culture Techniques
8.
J Photochem Photobiol B ; 193: 140-147, 2019 Apr.
Article En | MEDLINE | ID: mdl-30852387

Light is the most important physical factor in growth and development of plants. Light intensity is directly proportional to the growth and accumulation of natural antioxidants during in vitro cultures of various medicinal plants. The present research study was designed to determine the effect of different light intensities i.e. normal light (2000-2500 lx), diffused light (500-1000 lx) and complete dark (0 lx) on callus growth dynamics and production of natural antioxidants in olive cult. Arbosana. Highest callus induction frequency (50%) was observed in the stem explants pre-treated with silver nanoparticles suspension (AgNPs: 50 ppm) and cultured on MS media supplemented with combination of 6-Benzylaminopurine (BAP: 2 mg/l), Gibberellic acid (GA3: 1.5 mg/l) plus Naphthalene acetic acid (NAA: 0.5 mg/l). Maximum callus biomass (FW = 1414 mg/l) was recorded when the cultured explants were incubated initially for seven days in complete darkness, followed by transference to diffused light for one week and then finally placed under normal light in total fifty six days culture period. Moreover, phytochemical analysis of the callus cultures showed significantly higher activities of antioxidant enzymes i.e. SOD, POD, CAT and APx (2.45, 2.96, 2.57 and 1.67 U/mg. protein) in the callus cultures grown under dark condition as compared with other light treatments. For non-enzymatic antioxidant potential, maximum activity of TPC, TFC, PAL and DPPH (2.42 mg GAE/g, 1.50 mg QAE/g, 3.95 U/mg and 75%) were recorded in the calli raised in vitro under diffused light. This is the first report on the production of natural antioxidants in response to different light intensities in callus cultures of Olea europaea. Future studies should focus on large scale production of callus cultures in order to yield maximum biomass from this high valued plant.


Antioxidants/metabolism , Biomass , Light , Olea/radiation effects , Antioxidants/chemistry , Benzyl Compounds/chemistry , Catalase/metabolism , Gibberellins/chemistry , Metal Nanoparticles/chemistry , Olea/cytology , Olea/metabolism , Plant Cells/metabolism , Plant Proteins/metabolism , Purines/chemistry , Silver/chemistry , Superoxide Dismutase/metabolism
...