Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(19): 7431-7441, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130040

RESUMEN

The occurrence of pharmaceuticals in the aquatic environment is a global water quality challenge for several reasons, such as deleterious effects on ecological and human health, antibiotic resistance development, and endocrine-disrupting effects on aquatic organisms. To optimize their removal from the water cycle, understanding the processes during biological wastewater treatment is crucial. Time-of-flight secondary ion mass spectrometry imaging was successfully applied to investigate and analyze the distribution of pharmaceuticals as well as endogenous molecules in the complex biological matrix of biofilms for wastewater treatment. Several compounds and their localization were identified in the biofilm section, including citalopram, ketoconazole, ketoconazole transformation products, and sertraline. The images revealed the pharmaceuticals gathered in distinct sites of the biofilm matrix. While citalopram penetrated the biofilm deeply, sertraline remained confined in its outer layer. Both pharmaceuticals seemed to mainly colocalize with phosphocholine lipids. Ketoconazole concentrated in small areas with high signal intensity. The approach outlined here presents a powerful strategy for visualizing the chemical composition of biofilms for wastewater treatment and demonstrates its promising utility for elucidating the mechanisms behind pharmaceutical and antimicrobial removal in biological wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humanos , Eliminación de Residuos Líquidos/métodos , Citalopram/análisis , Citalopram/farmacología , Cetoconazol/análisis , Cetoconazol/farmacología , Sertralina/análisis , Sertralina/farmacología , Espectrometría de Masa de Ion Secundario , Contaminantes Químicos del Agua/análisis , Aguas Residuales , Biopelículas , Preparaciones Farmacéuticas
2.
Front Cell Neurosci ; 15: 658244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935654

RESUMEN

Striatal dopamine transporters (DAT) powerfully regulate dopamine signaling, and can contribute risk to degeneration in Parkinson's disease (PD). DATs can interact with the neuronal protein α-synuclein, which is associated with the etiology and molecular pathology of idiopathic and familial PD. Here, we tested whether DAT function in governing dopamine (DA) uptake and release is modified in a human-α-synuclein-overexpressing (SNCA-OVX) transgenic mouse model of early PD. Using fast-scan cyclic voltammetry (FCV) in ex vivo acute striatal slices to detect DA release, and biochemical assays, we show that several aspects of DAT function are promoted in SNCA-OVX mice. Compared to background control α-synuclein-null mice (Snca-null), the SNCA-OVX mice have elevated DA uptake rates, and more pronounced effects of DAT inhibitors on evoked extracellular DA concentrations ([DA]o) and on short-term plasticity (STP) in DA release, indicating DATs play a greater role in limiting DA release and in driving STP. We found that DAT membrane levels and radioligand binding sites correlated with α-synuclein level. Furthermore, DAT function in Snca-null and SNCA-OVX mice could also be promoted by applying cholesterol, and using Tof-SIMS we found genotype-differences in striatal lipids, with lower striatal cholesterol in SNCA-OVX mice. An inhibitor of cholesterol efflux transporter ABCA1 or a cholesterol chelator in SNCA-OVX mice reduced the effects of DAT-inhibitors on evoked [DA]o. Together these data indicate that human α-synuclein in a mouse model of PD promotes striatal DAT function, in a manner supported by extracellular cholesterol, suggesting converging biology of α-synuclein and cholesterol that regulates DAT function and could impact DA function and PD pathophysiology.

3.
Anal Chem ; 90(14): 8509-8516, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29912552

RESUMEN

We used time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effect of cisplatin, the first member of the platinum-based anticancer drugs, on the membrane lipid composition of model cells to see if lipid changes might be involved in the changes in exocytosis observed. Platinum-based anticancer drugs have been reported to affect neurotransmitter release resulting in what is called the "chemobrain"; however, the mechanism for the influence is not yet understood. TOF-SIMS imaging was carried out using a high energy 40 keV (CO2)6000+ gas cluster ion beam with improved sensitivity for intact lipids in biological samples. Principal components analysis showed that cisplatin treatment of PC12 cells significantly affects the abundance of different lipids and their derivatives, particularly phosphatidylcholine and cholesterol, which are diminished. Treatment of cells with 2 µM and 100 µM cisplatin showed similar effects on induced lipid changes. Lipid content alterations caused by cisplatin treatment at the cell surface are associated with the molecular and bimolecular signaling pathways of cisplatin-induced apoptosis of cells. We suggest that lipid alterations measured by TOF-SIMS are involved, at least in part, in the regulation of exocytosis by cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Exocitosis/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Animales , Apoptosis/efectos de los fármacos , Colesterol/metabolismo , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células PC12 , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal , Ratas , Espectrometría de Masa de Ion Secundario
4.
Anal Bioanal Chem ; 408(24): 6857-68, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27549796

RESUMEN

We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques.


Asunto(s)
Química Encefálica , Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos , Animales , Argón/química , Ratones , Nanopartículas/química , Fosfolípidos/análisis , Ácido Trifluoroacético/química
5.
Biointerphases ; 11(2): 02A319, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26856332

RESUMEN

Lipidomics has been an expanding field since researchers began to recognize the signaling functions of lipids and their involvement in disease. Time-of-flight secondary ion mass spectrometry is a valuable tool for studying the distribution of a wide range of lipids in multiple brain regions, but in order to make valuable scientific contributions, one has to be aware of the influence that sample treatment can have on the results. In this article, the authors discuss different sample treatment protocols for rodent brain sections focusing on signal from the hippocampus and surrounding areas. The authors compare frozen hydrated analysis to freeze drying, which is the standard in most research facilities, and reactive vapor exposure (trifluoroacetic acid and NH3). The results show that in order to preserve brain chemistry close to a native state, frozen hydrated analysis is the most suitable, but execution can be difficult. Freeze drying is prone to produce artifacts as cholesterol migrates to surface, masking other signals. This effect can be partially reversed by exposing freeze dried sections to reactive vapor. When analyzing brain sections in negative ion mode, exposing those sections to NH3 vapor can re-establish the diversity in lipid signal found in frozen hydrated analyzed sections. This is accomplished by removing cholesterol and uncovering sulfatide signals, allowing more anatomical regions to be visualized.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/química , Lípidos/análisis , Manejo de Especímenes/métodos , Espectrometría de Masa de Ion Secundario/métodos , Animales , Ratas Zucker
6.
Anal Chem ; 88(3): 1734-41, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26705612

RESUMEN

Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI.


Asunto(s)
Química Encefálica , Drosophila melanogaster/química , Oro/química , Lípidos/análisis , Nanopartículas del Metal/química , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sublimación Química , Animales , Masculino
7.
J Electroanal Chem (Lausanne) ; 781: 30-35, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28579928

RESUMEN

We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids.

8.
Anal Chem ; 86(19): 9473-80, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25137365

RESUMEN

An organic lateral resolution test device has been developed to measure the performance of imaging mass spectrometry (IMS) systems. The device contains periodic gratings of polyethylene glycol (PEG) and lipid bars covering a wide range of spatial frequencies. Microfabrication technologies were employed to produce well-defined chemical interfaces, which allow lateral resolution to be assessed using the edge-spread function (ESF). In addition, the design of the device allows for the direct measurement of the modulation transfer function (MTF) to assess image quality. Scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to characterize the device. TOF-SIMS imaging was used to measure the chemical displacement of biomolecules in matrix-assisted laser desorption/ionization (MALDI) matrix crystals. In a proof-of-concept experiment, the platform was also used to evaluate MALDI matrix application methods, specifically aerosol spray and sublimation methods.


Asunto(s)
Imagen Molecular/instrumentación , Colesterol/química , Cromo/química , Cristalización , Microtecnología , Imagen Molecular/métodos , Fosfatidilcolinas/química , Polietilenglicoles/química , Cuarzo/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Espectrometría de Masa de Ion Secundario/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...